
Architecture Review Goals, Principles and Examples

Gianluca Petrillo

University of Rochester/Fermilab

LArSoft Architecture and Testing Workshop, June 3rd , 2015

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 1 / 35

Outline

1 Introduction

2 Intervention areas
Interoperability
Factorization
Generic interface
Maintainability

3 Workshop

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 2 / 35

Strategy for architecture review

interoperability thou shalt work with any detector
maintainability thou shalt not drive mad people working with your code
factorization thou shalt not depend on execution environment
common interfaces thine algorithms shall share generic interfaces
architecture thou shalt be careful of code design and structure

These strategic areas do overlap; each of them has as a side effect the
creation of better code.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 3 / 35

Today’s goal

suggest patterns of good practices in authoring compliant code
appreciate some forms in which problems can manifest
learn techniques to solve specific architecture issues
improve a piece of existing LArSoft code

Cum granu salis
the guidelines I will describe most often give better results than if
ignored, and they do likely work for your case too;
yet they are not absolute, and if after some necessary thinking
they still don’t fit well, they might need some adjustment.

You are encouraged to show your case to the LArSoft team!
We’ll figure out together.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 4 / 35

Buzz word: interoperability

Interoperability
Algorithms are generic enough that they can operate on any LAr TPC
detector and readout configuration.

This rule is typically violated by the presence of assumptions, e.g. on
structure of the detector
geometry of the detector
readout parameters

In the few cases where complete interoperability is not possible, the
assumptions should be clearly stated in the documentation of the
algorithm and possibly also in the lines of code where they are used.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 5 / 35

Interoperability: detector assumptions

Algorithms sometimes assume the presence of a single TPC (failing
for DUNE), or of exactly three planes (failing for LArIAT).

Guidelines to detection:
lack of a code loop over TPCs
queries to Geometry without cryostat and TPC numbers
data structures that forget the location of their elements
data structures that mix elements from different TPCs

Guidelines to solution:
wrap the single TPC code into a TPC loop (e.g., using Geometry
iterators)
use data structures (maps) indexed by TPC or plane ID
make the code generic and geometry-independent

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 6 / 35

Detector assumptions example

Track3DKalmanHit module collects all hits in a single collection:

art::Handle< std::vector<recob::Hit> > hith;
evt.getByLabel(fHitModuleLabel, hith);
if(hith.isValid()) {
int nhits = hith->size();
for(int i = 0; i < nhits; ++i)

hits.push_back(art::Ptr<recob::Hit>(hith, i));
}

Excepts from Track3DKalmanHit: collection of hits

Therefore, algorithms should have been designed to sort hits out.
FuzzyCluster also collects all hits in a single collection:

// make a map of the geo::PlaneID to vectors of art::Ptr<recob::Hit>
std::map<geo::PlaneID, std::vector<art::Ptr<recob::Hit>>> planeIDToHits;
for(size_t i = 0; i < hitcol->size(); ++i)
planeIDToHits[hitcol->at(i).WireID().planeID()]

.push_back(art::Ptr<recob::Hit>(hitcol, i));
for(auto & itr : planeIDToHits) /* ... */

Excepts from FuzzyCluster: collection of hits

but they are grouped by plane, and one of them is processed at a time.
G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 7 / 35

Interoperability: geometry assumptions

Code internals may take assumptions on:
coordinate system (e.g. y = 0 is at the middle of TPC)
relative position of TPCs (e.g. no other TPC on top and bottom)

Detection of these ones typically takes thorough reading and deep
understanding of the source code. Still, hints can come from:

hard-coded numbers
geometrical calculation “from first principles” with no specific input
from Geometry service

Guidelines to solution:
retrieve the information from Geometry service provider
rework the geometric formula to be more generic

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 8 / 35

Geometry assumptions example

This code compares the geometric limits of the TPC (that’s what
DetHalfHeight() is about) with the intersection between two wires,
to find if that intersection is within:

// Y,Z limits of the detector
double YHi = geom->DetHalfHeight(tpc, cstat);
double YLo = -YHi;
double ZLo = 0.;
double ZHi = geom->DetLength(tpc, cstat);

// ...
geom->IntersectionPoint(iWire, jWire, ipl, jpl, cstat, tpc, y, z);
if(y < YLo || y > YHi || z < ZLo || z > ZHi) continue;

Excerpt from ClusterCrawlerAlg::VtxMatch() in LArSoft 4.3.3

The point returned by IntersectionPoint() is in global
coordinates. It is compared to the TPC boundaries above, that
represent the TPC surface only in a specific local coordinate frame.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 9 / 35

Interoperability: readout/DAQ assumptions

Assumptions can be taken also on:
trigger time (t0) being at the beginning of the readout window
readout window duration and structure
topology of TPC by channel numbers

Detection hints are similar to the ones for geometry assumptions:
again, hard-coded numbers
no query to DetectorProperties, LArProperties services
no query to TimeService and no use of the T0 data product
use of channel queries in post-readout reconstruction code
sorting by channel number in post-readout reconstruction code

Once the issues are identified, the resolution is typically easy, as long
as the service needed can be communicated to the algorithms.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 10 / 35

Readout assumptions example

Trigger time assumed to be 3200 TDC ticks within readout window:

// Kludge to remove out of time hits
if (hit->StartTick() > 6400 || hit->EndTick() < 3200) continue;

Excerpts from larana/CosmicRemoval/CRHitRemovalByPCA_module.cc

A solution: ask util::TimeService to convert hit times in
microseconds, and compare with the trigger time.

Here hits are Channels assumed to be on contiguous wires:

std::vector<int> const& ChannelHits = OrgHits[ThisView][ThisChannel];
for(size_t iOrg = 0; iOrg!= ChannelHits.size(); ++iOrg) {
if(fabs(ThisTime - HitsFlat.at(ChannelHits[iOrg])->PeakTime()) < eta)

SpacePointsPerHit.at(ChannelHits[iOrg]).push_back(iSP);
}

Excerpts from larreco/RecoAlg/SeedFinderAlgorithm.cxx

OrgHits organizes hits by view and channel. In fact, it really meant
plane and wire. A solution: map by wire ID instead.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 11 / 35

Interoperability: multi-experiment development

The problem of conflicting names can arise when developing with
multiple experiment repositories, as with:

libraries and modules with the same name (e.g., AnaTree)
FHiCL files with the same name (e.g., analysistreemodule.fcl)

We advocate the following guidelines:
create libraries with unique names:
options are given in the LArSoft wiki
(LArSoftWiki|Developing With LArSoft|The rules and guidelines)

plug your experiment in the FHiCL file name:
e.g., analysistreemodule_uboone.fcl

⇒ LArSoft itself is not immune from the problem:
conflicts within LArSoft are immediately detected and removed

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 12 / 35

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/The_rules_and_guidelines#File-and-Library-Naming

Buzz word: factorization

Factorization
The code decouples the core algorithms from the interface to specific
execution environments, libraries and frameworks.

This makes the algorithms easier to develop, test and be exchanged
between different frameworks.

Signs that this paradigm might be broken include:
framework modules that also implement the algorithms
algorithm classes using framework-specific constructs

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 13 / 35

Factorization: algorithms, modules and services

We think to factorization model as:

Service provider

art serviceart module

Algorithm

art framework Arrows show data flow
framework border

land of the free

the algorithm job is contained in the bottom, portable part
the service/module layer interfaces the workers to the framework

The top part can be replaced, for example, by just as little facility as
needed for the task, as in the unit test context.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 14 / 35

Factorization: algorithm model

One algorithm should be implemented in one class.

It should follow this life style:
1 constructed by the module

with some configuration
2 on each event:

1 event-specific configuration
and setup, if any

2 receive the service providers
from the module

3 receive the input data from
the module

4 perform the task
5 make output available as

“standard” data structures

/// Extensive documentation goes here!
class MyAlgorithmClass {

public:
/// (1) Construct and configure
MyAlgorithmClass
(fhicl::ParameterSet const& pset);

/// (2.1, 2.2) Initialize for a new event
void Init(geo::GeometryCore const* geom);

/// (2.3) Receive data
void SetInput
(std::vector<raw::RawDigit> const& digits);

/// (2.4) Perform the task
void Run();

/// (2.5) Return the results
std::unique_ptr<std::vector<recob::Oscillation>>
GetResult();

/// Destroy temporary data
void Clear();

}; // class MyAlgorithmClass

Example of algorithm class structure

It may employ sub-algorithms, implemented as separate classes.
G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 15 / 35

Algorithm model example

This is most of the public interface of CCHitFinder:
class CCHitFinderAlg {
public:

// ...things that I omit because they should not have been public...

CCHitFinderAlg(fhicl::ParameterSet const& pset);
virtual ~CCHitFinderAlg() = default;

virtual void reconfigure(fhicl::ParameterSet const& pset);

void RunCCHitFinder(std::vector<recob::Wire> const& Wires);

/// Returns (and loses) the collection of reconstructed hits
std::vector<recob::Hit>&& YieldHits() { return std::move(allhits); }

/// Print the fit statistics
template <typename Stream> void PrintStats(Stream& out) const;

private:
// your signature hell here

};

CCHitFinder algorithm class (larreco/RecoAlg/CCHitFinder.h)

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 16 / 35

Algorithm model example: comments

This is most of the public interface of CCHitFinder: a good start.
I omitted some public things that should not be public
input phase is merged with run phase — nothing wrong with that
no setup: no way to tell the algorithm which geometry to use;
and it needs it: currently it’s asking it to art

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 17 / 35

Factorization: module model

The module is the algorithm’s personal assistant:

1 constructs and owns
the algorithm

2 on each event:
1 updates algorithm

configuration
2 obtains and delivers

service providers to
the algorithm

3 transfers input data
from the event to
the algorithm

4 ask the algorithm to
do the job

5 transfers results
from the algorithm
to the event

void MyModule::produce(art::Event& evt) {
// (1) Construct and configure
MyAlgorithmClass algo(pset);

// (2.1, 2.2). Initialize for a new event
algo.Init(&art::ServiceHandle<geo::Geometry>());

// (2.3) Translate input data from framework to algorithm
art::ValidHandle<std::vector<raw::RawDigit>> hRD

= evt.getValidHandle<std::vector<raw::RawDigit>>
(fRawDigits);

algo.SetInput(*hRD);

// (2.4) Perform the task
algo.Run();

// (2.5) Fetch results and donate them to the framework
std::unique_ptr<std::vector<recob::Oscillation>> osc

(new std::vector<recob::Oscillation>);

*osc = algo.GetResult();
evt.put(std::move(osc));

}; // MyModule::produce()

Example of factorized art module structure

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 18 / 35

Module model example

LineCluster module owns a pointer to ClusterCrawlerAlg:
fCCAlg.reset(new ClusterCrawlerAlg
(pset.get< fhicl::ParameterSet >("ClusterCrawlerAlg")));

art::ValidHandle< std::vector<recob::Hit>> hitVecHandle
= evt.getValidHandle<std::vector<recob::Hit>>(fHitFinderLabel);

fCCAlg->RunCrawler(*hitVecHandle); // look for clusters in all planes

// access to the algorithm results
ClusterCrawlerAlg::HitInCluster_t const& HitInCluster
= fCCAlg->GetHitInCluster();

std::unique_ptr<std::vector<recob::Hit>> FinalHits
(new std::vector<recob::Hit>(std::move(fCCAlg->YieldHits())));

std::vector<ClusterCrawlerAlg::ClusterStore> const& Clusters
= fCCAlg->GetClusters();

// convert cluster and vertices into recob objects, create associations
// ... and put everything in the event
std::unique_ptr<std::vector<recob::Cluster> > ccol
(new std::vector<recob::Cluster>(std::move(sccol)));

evt.put(std::move(ccol)); // ... et cetera...

Excerpts from larreco/ClusterFinder/LineCluster_module.cc

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 19 / 35

Factorization: service model

Services are also split between:
⇒ framework-independent provider

answers service requests
assumes it is up-to-date and
synchronized with the world

⇒ framework interface
creates, configures and owns
the service provider instance
updates the provider when
needed (e.g., on new event)
forwards requests to the
provider

Algorithms should be given a
pointer to the provider (“get()”).

class OurServiceProvider {
public:

/// Configure, register with the framework
OurServiceProvider
(fhicl::ParameterSet const& pset);

/// Update the information
void Update(TimeStamp_t event_time);

/// ... and the actual service
It_t GetIt() const;

}; // class OurServiceProvider

Example of service provider

class OurService {
std::unique_ptr<OurServiceProvider> provider;
public:

/// Configure, register with the framework
OurService(
fhicl::ParameterSet const& pset,
art::ActivityRegistry& reg
);

/// Return a pointer to the provider
OurServiceProvider const* get() const;

/// To be executed by art on each new event;
/// may call OurServiceProvider::Update()
void preProcessEvent(const art::Event& evt);

}; // class OurService

Example of factorized art service
G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 20 / 35

Service model example: the service provider

class SimpleTimeService {
public:

/// TPC readout start time offset from trigger
virtual double TriggerOffsetTPC() const { return fTriggerOffsetTPC; }

/// Trigger electronics clock time in [us]
double TriggerTime() const { return fTriggerTime; }

/// Beam gate electronics clock time in [us]
double BeamGateTime() const { return fBeamGateTime; }

// ... and more service calls

protected:
// configuration is not exposed to the public; e.g.:
virtual void SetTriggerTime(double trig_time, double beam_time);

};

Exerpts from lardata/Utilities/SimpleTimeService.h

this implementation requires the framework to derive a class from
the provider
it is in general better practice for the service to contain the provider
inheritance is only necessary when factorizing an existing service
not to break existing code

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 21 / 35

Service model example: interface to art

class TimeService : public SimpleTimeService {
public:

TimeService(fhicl::ParameterSet const& pset, art::ActivityRegistry& reg);

/// Override of base class function ... implement DB status check
virtual double TriggerOffsetTPC() const override;

//*** All following functions are not for users to execute ***//

/// Re-configure the service module
void reconfigure(fhicl::ParameterSet const& pset);

/// Function to be executed @ run boundary
void preBeginRun(art::Run const& run);

/// Function to be executed @ event boundary
void preProcessEvent(const art::Event& evt);

/// Function to be executed @ file open
void postOpenFile(const std::string& filename);

// ... and the private stuff
}; // TimeService

Exerpts from lardata/Utilities/TimeService.h

The additional functions are connected to the framework. For example,
TimeService::preProcessEvent() reads trigger information
from the event and updates the provider by calling
SimpleTimeService::SetTriggerTime().

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 22 / 35

Factorization: art and library dependences

algorithms should depend only on widely used libraries
... but they should not implement common things from scratch

We tend to recommending the following compromise:
+ LArSoft data structures: recob, anab, ...
+ nutools data structures: simb
+ ROOT, CLHEP, Boost (if you really have to...)
+ FNAL’s message facility, FHiCL
± FNAL CET libraries (cet::exception is “unavoidable”)
± art::Assns, art::Ptr
− art::Event, art::FindOneP()...
− art::Handle, art::ServiceHandle... art::*

The ongoing work by the LArSoft/LArLite interoperability task force will
define some of the orange areas of what should or should not be used.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 23 / 35

Factorization: unit testing

tests should be self-standing...
...but they need to fill in for a
framework

The service provider developer can
provide helpers for easy setup of:

message facility service
parsing of a FHiCL file
set up of user services

Boost unit testing
It is possible, although a bit more
complicate, to write “Boost fixtures”
providing a service-aware
environment for Boost unit tests.

class MyServiceTestEnvironment {
public:

/// Sets everything up at once (ideally)
MyServiceTestEnvironment();

/// Access to FHiCL configuration
fhicl::ParameterSet const& Parameters() const;

/// Access to service providers
MyServiceProvider const* MyService() const
{ return myService.get(); }

private:
std::unique_ptr<MyServiceProvider> myService;

}; // MyServiceTestEnvironment

Example of test environment class

// create test environment (may need arguments)
MyServiceTestEnvironment TestEnv;

// create a test with FHiCL configuration
MyAlgoTestClass TestAlgo(TestEnv.Parameters());

// set up the test
TestAlgo.Setup(TestEnv.MyService());

// run the test
TestAlgo.Run();

Example of test in the environment

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 24 / 35

Buzz word: generic interfaces

Generic interfaces
Algorithms that produce the same data structures (in different ways)
should share the interface.

General guidelines:
think abstract
use Occam’s razor to prune redundant inputs and services
use “standard” classes for input and output
if your algorithm needs a larger interface because it does
something more than the others in its category... maybe you are
effectively dealing with two algorithms there
don’t overdo it: metaprogramming is both cool and hard to read

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 25 / 35

Generic interfaces: example

This is a mock-up of a hit finder interface:
class HitFinderBaseAlg {

public:
/// Virtual destructor: we need one
virtual ~HitFinderBaseAlg() = default;

/// Reads configuration from a parameter set
virtual void Configure(fhicl::ParameterSet const&) {}

/// Acquires pointers to non-owned resources
virtual void Setup
(geo::GeometryCore const*, util::DetPropertiesCore const*, util::LArPropertiesCore const*);

/// Acquires the input; wires must exist until results are claimed
virtual void SetWires(std::vector<recob::Wire> const& wires);

/// Performs the actual hit finding
virtual void Run() = 0;

/// Returns results; can be called only once
virtual std::vector<recob::Hit> YieldHits() = 0;

/// Frees the owned resources
virtual Clear() {}

}; // HitFinderBaseAlg

Example of abstract interface for hit finder algorithms

Some of these functions might have a standard no-op implementation.

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 26 / 35

Buzz word: maintainability

Maintainability
The code should help people who try to use, fix, or extend it.

General guidelines:
good design: think ahead (e.g., write documentation first)
modularity:

– avoid functions that perform more than one task
– sublet sub-tasks to other functions
– don’t worry about function call overhead until your profiler says to

documentation: there is always somebody missing it
tests are critical when extending the algorithms

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 27 / 35

Work session organization

1 pick your team (I recommend to work in pairs or singly)
2 pick your module: something you are interested in
3 create a working area and a feature branch, for example:

git flow feature start yournametag_ReviewModuleName
4 evaluate it

glance at the code, get its structure
take a pastry

dig into it, apply patterns, assess the problems
(maybe another pastry)

5 design solutions
write it down!
if time allows, implement or start it

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 28 / 35

Work material

Now we want you to pick some code and try to improve it!
Here are some recommendations for modules of interest:

1 RawHitFinder (hit finder from RawDigit)
2 fuzzyCluster (clustering based on Hough transform)
3 Track3DKalmanHit (tracking based on 3D Kalman filter)
4 ShowerReco3D

5 Calorimetry

6 AnalysisTree (reconstructed information into a ROOT tree)

Pick the one you like, among them or others.
This is not just an exercise:

you can do real work to improve them
I don’t necessarily know the “solution” (not even the problem!) for
each of them

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 29 / 35

Backup

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 30 / 35

Work material: want more?

Here is some wider recommendation for modules of interest:
1 GausHitFinder

2 CosmicPFParticleTagger

3 RawHitFinder (hit finder from RawDigit)
4 DisambigCheater

5 fuzzyCluster (clustering based on Hough transform)
6 CosmicTracker

7 Track3DKalmanHit (tracking based on 3D Kalman filter)
8 TrackStitcher

9 ShowerReco3D

10 Calorimetry

11 AnalysisTree (reconstructed information into a ROOT tree)

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 31 / 35

Non-TPC-aware code

Assumes all TPCs are born equal:

// Calculate wire coordinate systems
for(size_t n=0; n!=3; ++n)
{

geom->WireEndPoints(0,0,n,0,xyzStart1,xyzEnd1);
geom->WireEndPoints(0,0,n,1,xyzStart2,xyzEnd2);
fWireDir[n] = TVector3(xyzEnd1[0] - xyzStart1[0],

xyzEnd1[1] - xyzStart1[1],
xyzEnd1[2] - xyzStart1[2]).Unit();

fPitchDir[n] = fWireDir[n].Cross(fXDir).Unit();
if(fPitchDir[n].Dot(TVector3(xyzEnd2[0] - xyzEnd1[0],

xyzEnd2[1] - xyzEnd1[1],
xyzEnd2[2] - xyzEnd1[2]))<0) fPitchDir[n] = -fPitchDir[n];

fWireZeroOffset[n] =
xyzEnd1[0]*fPitchDir[n][0] +
xyzEnd1[1]*fPitchDir[n][1] +
xyzEnd1[2]*fPitchDir[n][2];

}

SeedFinderAlgorithm::CalculateGeometricalElements()

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 32 / 35

Simple Geometry-aware unit test (I)

This is a simple test using Boost unit test library.
cet_test(geometry_thirdplaneslope_test

SOURCES geometry_thirdplaneslope_test.cxx
LIBRARIES Geometry

${MF_MESSAGELOGGER}
${MF_UTILITIES}
${FHICLCPP}
${CETLIB}

USE_BOOST_UNIT
DATAFILES test_geometry.fcl
TEST_ARGS test_geometry.fcl

)

Linking: CMakeLists.txt

#define BOOST_TEST_MODULE GeometryThirdPlaneSlopeTest
#include <boost/test/included/unit_test.hpp>

// LArSoft libraries
#include "test/Geometry/geometry_boost_unit_test_base.h"
#include "SimpleTypesAndConstants/PhysicalConstants.h" // util::pi()
#include "Geometry/GeometryCore.h"
#include "Geometry/ChannelMapStandardAlg.h"

// utility libraries
#include "messagefacility/MessageLogger/MessageLogger.h"

// C/C++ standard libraries
#include <string>

Part I: geometry_thirdplaneslope_test.cxx: include needed headers

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 33 / 35

Simple Geometry-aware unit test (II)

using StandardGeometryConfiguration:
= testing::BoostCommandLineConfiguration<

testing::BasicGeometryEnvironmentConfiguration<geo::ChannelMapStandardAlg>
>;

using SimpleGeometryTestFixture
= testing::GeometryTesterEnvironment<StandardGeometryConfiguration>;

BOOST_FIXTURE_TEST_SUITE(GeometryIterators, SimpleGeometryTestFixture)

Part II: environment setup

struct StandardGeometryConfiguration:
public testing::BoostCommandLineConfiguration<

testing::BasicGeometryEnvironmentConfiguration<geo::ChannelMapStandardAlg>
>

{
StandardGeometryConfiguration()
{ SetApplicationName("GeometryThirdPlaneSlopeTest"); }

}; // class StandardGeometryConfiguration

using SimpleGeometryTestFixture
= testing::GeometryTesterEnvironment<StandardGeometryConfiguration>;

BOOST_FIXTURE_TEST_SUITE(GeometryIterators, SimpleGeometryTestFixture)

Part II, with customized test name

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 34 / 35

Simple Geometry-aware unit test (III)

BOOST_AUTO_TEST_CASE(AllTests)
{

geo::GeometryCore const& geom = *Geometry();

const double angle_u = 1. / 3. * util::pi<double>();
const double angle_v = 2. / 3. * util::pi<double>();
const double angle_w = 1. / 2. * util::pi<double>();

BOOST_MESSAGE(
"Wire angles: u=" << angle_u << " v=" << angle_v << " => w=" << angle_w
);

const double slope_u = 1. / std::sqrt(3);
const double slope_v = 1. / std::sqrt(3);

const double expected_slope_w = 0.5;

double slope_w = geom.ComputeThirdPlaneSlope
(angle_u, slope_u, angle_v, slope_v, angle_w);

BOOST_MESSAGE(
"Slopes: s(u)=" << slope_u << " s(v)=" << slope_v << " => s(w)=" << slope_w
);

BOOST_CHECK_CLOSE(slope_w, expected_slope_w, 0.01); // tolerance: 0.01%

} // BOOST_AUTO_TEST_CASE(AllTests)

BOOST_AUTO_TEST_SUITE_END()

Part III: test code

G. Petrillo (Rochester/FNAL) LArSoft workshop 2015 — Architecture June 3rd , 2015 35 / 35

	Introduction
	Intervention areas
	Interoperability
	Factorization
	Generic interface
	Maintainability

	Workshop
	Appendix

