
Session 7:  
More Module Interface"
Rob Kutschke!
art and LArSoft Course!
August 4, 2015!
!

Welcome to Day 2!"

•  Yesterday, you:!
–  Followed the site specific setup procedure!

•  source /products/course_setup.sh!
–  Source window: cloned a repository and checked out a branch!
–  Build window: built and ran code!

•  How to continue after logging out and back in:!
–  See Chapter 11 of the art workbook writeup (2 pages)!

•  Follow the site specific setup procedure.!
•  Open source and build windows!
•  source one setup script in each of the source and build windows!

–  Continue to work on the previous exercise or start a new one.!
–  (Note the two meanings of “source”; is it clear?)!

8/3/2015!Kutschke/Session 7: More Module Interface"2!

Recap: The Event Loop"

•  Your experiment groups events into runs and subruns!
–  Your experiment the meaning of a run or subrun!
–  Art provides bookkeeping tools to help manage them!

•  A short art job might see the following:!

8/3/2015!Kutschke/Session 7: More Module Interface"3!

•  A longer art job might see many runs, many subruns per run
and many events per subrun.!

•  If I read all of my data to choose very rare but very interesting
events (a sparse skim), I might have many runs and subruns
with zero events!!

•  art can manage both situations!

Recap: The analyze Member Function"

8/3/2015!Kutschke/Session 7: More Module Interface"4!

•  analyze is called once for every event.!
•  art::Event is an art::EventID plus data products!
•  Art::EventID 3 parts: run, subrun and event numbers.!

namespace tex {!
 class First : public art::EDAnalyzer {!
 public:!
 explicit First (fhicl::ParameterSet const&);!
 void analyze (art::Event const& event) override;!
 };!
}!

New With the First Part of this Exercise:"

•  A module may choose to define member functions that art will
call at start of the job, at the start of each run and at the start
of each subrun.!

•  You will also see the endJob, endRun and endSubRun
member functions.!

8/3/2015!Kutschke/Session 7: More Module Interface"5!

 class Optional : public art::EDAnalyzer {!
 public:!
!
 explicit Optional(fhicl::ParameterSet const&);!
 void beginJob () override;!
 void beginRun (art::Run const& run) override;!
 void beginSubRun(art::SubRun const& subRun) override;!
 void analyze (art::Event const& event) override;!
!
 };!

art::Run and art::SubRun objects:"

•  art::Event!
–  An art::EventID plus a collection of data products. !

•  art::Run!
–  An art::RunID plus a collection of data products. !

•  art::SubRun!
–  An art::SubRunID plus a collection of data products.!

•  art::SubRunID !
–  has 2 parts: run and subrun numbers!

•  art::RunID !
–  has 1 part: run number!

8/3/2015!Kutschke/Session 7: More Module Interface"6!

 void beginJob () override;!
 void beginRun (art::Run const& run) override;!
 void beginSubRun(art::SubRun const& subRun) override;!
 void analyze (art::Event const& event) override;!

beginJob vs Constructor"

•  Both are called once at the start of job.!
•  What tasks should be done in each?!

–  Always initialize member data in the constructor!
•  Prefer initializer list over initialization in the body of the c’tor !

–  Some other operations must be done in the constructor!
•  These will be described as you encounter them.!

–  Other advice:!
•  Your experiment may have a policy – ask!!
•  One choice is to do as much as possible in the constructor.!
•  My choice: create histogram, ntuple and TTree objects at
beginJob, beginRun or beginSubRun, never in the
constructor.!
–  In my mind this separates the “computing infrastructure” work from

the physics work.!

8/3/2015!Kutschke/Session 7: More Module Interface"7!

•  This tells art to print an informational message just before and
just after every call to user supplied code!
–  And just before and after some of its own internal operations.!

•  You can use this to see if art is calling your code at the times
when you expect it to be called.!

•  If you don’t understand what art is doing, this is one of the
tools you can use to help understand.!

•  You will use this option in this exercise.!

Tracer"

•  art has a command line option --trace!

8/3/2015!Kutschke/Session 7: More Module Interface"8!

art –c file.fcl --trace!

Module Hygiene"

•  Did you remember to use override?!
•  When you look at the example code, you will see that does

not provide a destructor. Because the destructor has no work
to do, the compiler supplied destructor will do the right thing!
–  If it will do the right thing, let the compiler write it for you!

8/3/2015!Kutschke/Session 7: More Module Interface"9!

Questions so Far?"

8/3/2015!Kutschke/Session 7: More Module Interface"10!

Hints on Navigating the Giant PDF file"

•  Title page!
•  Blank page!
•  List of Chapters (3 pages long)!
•  Detailed Table of Contents (16 pages long)!
•  Everything is internally hyperlinked:!

–  Page numbers in the TOC, and index!
–  Table, Listing, Figure and Section cross-references!
–  Configure your browser to highlight hyperlinks.!

•  Many PDF browsers have previous and next buttons!
–  MAC Safari!

•  Back: Apple-[!
•  Forward: Apple-]!

8/3/2015!Kutschke/Session 7: More Module Interface"11!

Get Started"

•  Start to work on Chapter 13 (Exercise 3) in the are workbook
writeup!
–  https://web.fnal.gov/project/ArtDoc/Shared

%20Documents/art-documentation.pdf!

8/3/2015!Kutschke/Session 7: More Module Interface"12!

•  My Powerpoint is flakey.!
•  If the above link fails or if it display pdf as text, try:!

–  https://web.fnal.gov/project/ArtDoc/SitePages/documentation.aspx!
–  Under latest releases, click on the document with the highest

version number. !
•  If both links fail, mouse in the url.!

Backup Slides: "

8/3/2015!Kutschke/Session 7: More Module Interface"13!

Data Products"

•  See section 3.6.4 of the art workbook writeup.!
•  The unit of event-data that is managed by art!

–  More precisely by art::Event!
•  Examples:!

–  Raw data is often one data product per sub-system!
–  Each module in the reconstruction chain will create one or more

data products.!
•  Unpacked hits for each subsystem!
•  Reconstructed tracks, showers, jets, electrons, muons ….!
•  Reconstructed neutrino interactions!

–  Sometimes called “events”, just to create more confusion …!
–  The simulation chain will create many data products!

8/3/2015!Kutschke/Session 7: More Module Interface"14!

The Assembly Line Metaphor"

•  art is like an assembly line!
•  The art::Event is the product being built!
•  Each function in each module is a work station along the line!
•  art’s job is to make sure that the product (the art::Event)

gets to each work station (functions supplied by modules) in
the right order.!

8/3/2015!Kutschke/Session 7: More Module Interface"15!

