2= Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Session 7:
More Module Interface

Rob Kutschke
art and LArSoft Course
August 4, 2015

Welcome to Day 2!

* Yesterday, you:
— Followed the site specific setup procedure
* source /products/course setup.sh
— Source window: cloned a repository and checked out a branch
— Build window: built and ran code

« How to continue after logging out and back in:

— See Chapter 11 of the art workbook writeup (2 pages)

* Follow the site specific setup procedure.

* Open source and build windows

e source one setup script in each of the source and build windows
— Continue to work on the previous exercise or start a new one.

— (Note the two meanings of “source”; is it clear?)

2= Fermilab

2 Kutschke/Session 7: More Module Interface 8/3/2015

Recap: The Event Loop

* Your experiment groups events into runs and subruns
— Your experiment the meaning of a run or subrun
— Art provides bookkeeping tools to help manage them

* A short art job might see the following:
@ . S?lg%l:n Event [S] [SuEbrgjun] [SEE%Hn] Event SuEbr;jun . E

* Alonger artjob might see many runs, many subruns per run
and many events per subrun.

 If I read all of my data to choose very rare but very interesting
events (a sparse skim), | might have many runs and subruns
with zero events!

 artcan manage both situations
aF Fermilab

3 Kutschke/Session 7: More Module Interface 8/3/2015

Recap: The analyze Member Function

Begln Begln End Begin End End
n . SubRun E"e"t] [E"e"t] [SubRun] [SubRun] [E"e"‘] [SubRun Job

namespace tex {
class First : public art::EDAnalyzer {

public:

explicit First (fhicl::ParameterSet const&);

void analyze (art::Event const& event) override;
i

}

* analyze is called once for every event.
* art::Event IS an art::EventID plus data products

e Art::EventID 3 parts:run, subrun and event numbers.

2= Fermilab

4 Kutschke/Session 7: More Module Interface 8/3/2015

New With the First Part of this Exercise:

class Optional : public art::EDAnalyzer {
public:

explicit Optional(fhicl::ParameterSet consté&);

void beginJob () override;

void beginRun (art::Run consté& run) override;
void beginSubRun(art::SubRun const& subRun) override;
void analyze (art::Event const& event) override;

}i

A module may choose to define member functions that art will
call at start of the job, at the start of each run and at the start
of each subrun.

* You will also see the endJob, endRun and endSubRun
member functions.

2= Fermilab

5 Kutschke/Session 7: More Module Interface 8/3/2015

art::Run and art::SubRun objects:

void beginJob () override;

void beginRun (art::Run consté& run) override;
void beginSubRun(art::SubRun const& subRun) override;
void analyze (art::Event const& event) override;

e art::Event

— An art::EventID plus a collection of data products.
* art::Run

— An art::RunID plus a collection of data products.
* art::SubRun

— An art::SubRunID plus a collection of data products.
e art::SubRunlD

— has 2 parts: run and subrun numbers
e art::RunlD

— has 1 part: run number
aF Fermilab

6 Kutschke/Session 7: More Module Interface 8/3/2015

beginJob vs Constructor

« Both are called once at the start of job.
« What tasks should be done in each?

— Always initialize member data in the constructor

 Prefer initializer list over initialization in the body of the c’tor
— Some other operations must be done in the constructor

« These will be described as you encounter them.
— Other advice:

* Your experiment may have a policy — ask!

* One choice is to do as much as possible in the constructor.

« My choice: create histogram, ntuple and TTree objects at
beginJob, beginRun oOr beginSubRun, never in the
constructor.

— In my mind this separates the “computing infrastructure” work from
the physics work.

2= Fermilab

7 Kutschke/Session 7: More Module Interface 8/3/2015

Tracer

art has a command line option --trace
art —c file.fcl --trace

« This tells art to print an informational message just before and
just after every call to user supplied code

— And just before and after some of its own internal operations.

* You can use this to see if art is calling your code at the times
when you expect it to be called.

 If you don’t understand what art is doing, this is one of the
tools you can use to help understand.

* You will use this option in this exercise.

2= Fermilab

8 Kutschke/Session 7: More Module Interface 8/3/2015

Module Hygiene

» Did you remember to use override?

 When you look at the example code, you will see that does
not provide a destructor. Because the destructor has no work
to do, the compiler supplied destructor will do the right thing

— If it will do the right thing, let the compiler write it for you

2= Fermilab

9 Kutschke/Session 7: More Module Interface 8/3/2015

Questions so Far?

2= Fermilab

10 Kutschke/Session 7: More Module Interface 8/3/2015

Hints on Navigating the Giant PDF file

11

Title page

Blank page

List of Chapters (3 pages long)

Detailed Table of Contents (16 pages long)

Everything is internally hyperlinked:
— Page numbers in the TOC, and index

— Table, Listing, Figure and Section cross-references

— Configure your browser to highlight hyperlinks.

Many PDF browsers have previous and next buttons

— MAC Safari
» Back: Apple-[
* Forward: Apple-]

Kutschke/Session 7: More Module Interface

8/3/2015

2= Fermilab

Get Started

 Start to work on Chapter 13 (Exercise 3) in the are workbook
writeup

— https://web.fnal.gov/project/ArtDoc/Shared
%20Documents/art-documentation.pdf

« My Powerpoint is flakey.
* |If the above link fails or if it display pdf as text, try:

— https://web.fnal.gov/project/ArtDoc/SitePages/documentation.aspx

— Under latest releases, click on the document with the highest
version number.

 |If both links fail, mouse in the url.

2= Fermilab

12 Kutschke/Session 7: More Module Interface 8/3/2015

Backup Slides:

2= Fermilab

13 Kutschke/Session 7: More Module Interface 8/3/2015

Data Products

» See section 3.6.4 of the art workbook writeup.
« The unit of event-data that is managed by art
— More precisely by art::Event

« Examples:
— Raw data is often one data product per sub-system
— Each module in the reconstruction chain will create one or more
data products.
« Unpacked hits for each subsystem
* Reconstructed tracks, showers, jets, electrons, muons
» Reconstructed neutrino interactions
— Sometimes called “events”, just to create more confusion ...

— The simulation chain will create many data products

2= Fermilab

14 Kutschke/Session 7: More Module Interface 8/3/2015

The Assembly Line Metaphor

« artis like an assembly line
 The art::Event Iis the product being built
» Each function in each module is a work station along the line

« arfs job is to make sure that the product (the art: :Event)
gets to each work station (functions supplied by modules) in
the right order.

2= Fermilab

15 Kutschke/Session 7: More Module Interface 8/3/2015

