
Obtaining and building code: Setting
up for development
James Amundson
art/LArSoft course
2015-08-03

Overview

•  The goal of this lecture is to give you the background to
understand Exercise 2: Building and Running Your First
Module.

•  You will be using git to check out the code.
–  A few git tips will help.

•  You will be using cetbuildtools to build the code.
–  Understanding the context for cetbuildtools will help.

2015-08-03James Amundson | Obtaining and building code2

git

•  git has recently become the industry standard for tracking
revisions of source code.
–  Plus: There is a wealth of git documentation available on the

web.
–  Plus: git has many, many features.
–  Minus: You have to determine which small set of git’s features

are appropriate for you.
•  git is a distributed system.

–  Everyone has his or her own copy of the repository
•  All git commands are of the form

git cmd [options]
–  Use, e.g., “man git-clone” to get the man page for “git clone”

•  works everywhere, “man git clone” works on some systems, but
not others.

2015-08-03James Amundson | Obtaining and building code3

More git

•  git clone makes a local copy of a git repository
git clone http://cdcvs.fnal.gov/projects/art-workbook
–  The original repository becomes “origin”

•  git checkout –b creates a branch based on something
git checkout –b work origin/August2015
–  creates the branch “work”
–  “work” is based on the branch August2015

•  git branch –a lists all branches
•  git tag –l lists all tags

–  interface consistency is not git’s strong suit

2015-08-03James Amundson | Obtaining and building code4

Now for something completely different: git

•  git pull [remote] [branch] gets updates from other repositories
and merges them into our working branch
–  pull = fetch + merge

git fetch <remote>
git merge <remote>/<branch>

•  git push [remote [localref:remoteref] sends updates to remote
repository

2015-08-03James Amundson | Obtaining and building code5

Systems for building code

•  Some steps necessary to compile code
–  find external packages

•  header files
•  libraries

–  determine compiler flags
•  optimization settings, etc.

–  compile source files
–  link object files
–  install build products

•  In addition, properly supporting incremental builds is crucial
–  Faster is always better…
–  …unless it is too fast

•  Inconsistent builds are easy to create, awful to deal with

2015-08-03James Amundson | Obtaining and building code6

Industry standards

•  Interesting survey information about contemporary C++
development:
http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-
before-clion/

2015-08-03James Amundson | Obtaining and building code7

CMake and cetbuildtools

•  CMake is the most popular C++ build tool today.
–  Still, it is not completely dominant.

•  CMake creates low-level build scripts
–  Make, Ninja, etc.

•  Run cmake once, then use make (or ninja…); see below.
•  CMake can be used with various integrated development

environments (IDEs).
–  Outside the scope of this course.

•  cetbuildtools is built on top of CMake.
–  https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/wiki
–  Simplifies and enforces consistency.
–  buildtool replaces cmake and make (or ninja).

•  Users always use the same command.

2015-08-03James Amundson | Obtaining and building code8

CMake basics

•  Build description is stored in CMakeLists.txt .
–  One CMakeLists.txt per directory.

•  Trivial raw CMake example. Two CMakeLists.txt files:

2015-08-03James Amundson | Obtaining and building code9

cmake_minimum_required(VERSION 2.8.11)
project(HELLO)
add_subdirectory(Hello)

add_executable(helloDemo helloDemo.cc)

parent	 directory	

subdirectory	 Hello	

•  Language features:
–  Commands do not return values; they do modify arguments.
–  Commands (e.g., add_subdirectory) are case insensitive;

keywords (e.g., VERSION) are case sensitive.
–  Users can write new commands.

•  Most of the content of cetbuildtools is new CMake commands.
•  I do not recommend end-users start writing new commands.

Build systems, CMake and cetbuildtools

•  The completely trivial CMake example does not display the
true usefulness of CMake
–  Could have done something nearly as simple with plain Make.

•  Would not have had automatic header dependency discovery,
among other things.

•  Real development projects become complicated very quickly.
•  A completely trivial cetbuildtools example would not display

the true usefulness of cetbuildtools.
–  See Example 2.

2015-08-03James Amundson | Obtaining and building code10

Using cetbuildtools

•  We always separate source and build directories
–  It is optional to do so with plain CMake.
–  Separation is good practice.

•  Multiple builds from same source (e.g., optimized and debug).
•  Delete all build products without touching source.

•  In Example 2, you will do

2015-08-03James Amundson | Obtaining and building code11

|alcourse>source ../art-workbook/ups/setup_for_development -p
$ART_WORKBOOK_QUAL
The working build directory is /home/amundson/work/build-prof2
The source code directory is /home/amundson/work/art-workbook
----------- check this block for errors -----------------------
--
<snip>
|alcourse>buildtool –j4

•  The first command locates the source files and sets the
hooks for the various dependencies

Using cetbuildtools

•  The command
buildtool –j4
performs the actual build, including running CMake and the
resulting build files

•  The flag –j4 tells buildtool to use up to four parallel
processes.
–  More is generally better.
–  Limitations come from memory usage, shared resource

problems, etc., as well as the fundamental size of the build.
•  The command

buildtool –-help (note: two dashes)
will display help for buildtool commands.

2015-08-03James Amundson | Obtaining and building code12

Get Started

•  Work on Exercise 2 (Chapter 10) of the art Workbook
https://web.fnal.gov/project/ArtDoc/Shared%20Documents/art-documentation.pdf

2015-08-03James Amundson | Obtaining and building code…13

