
Chris Jones
art/LArSoft Course
03 August 2015

Session 1
Basics of C++

Chris Jones I Session 1: Basics of C++ 08/03/15

What we will cover

• Covering just those topics which are known gotchas

• Pointers and References

• Const

• Function calls

• Compiling and Linking

2

Chris Jones I Session 1: Basics of C++ 08/03/15

Non-References/Pointers

• Non reference/pointer variables store values in memory

3

int a = 4;

int& ref = a;

int* ptr = &a;

Variable
Name

Memory
Address Value

a 0x…1 4

ref — 4

ptr 0x…2 0x…1

40x…1

a

0x…10x…1

refptr

Chris Jones I Session 1: Basics of C++ 08/03/15

References

• References are aliases to existing memory
- References do not have a separate memory address

4

int a = 4;

int& ref = a;

int* ptr = &a;

Variable
Name

Memory
Address Value

a 0x…1 4

ref — 4

ptr 0x…2 0x…1

40x…1

a

0x…10x…1

refptr

Chris Jones I Session 1: Basics of C++ 08/03/15

Pointers

• Pointers store memory addresses in memory
- Pointers do have an assigned memory address

5

int a = 4;

int& ref = a;

int* ptr = &a;

Variable
Name

Memory
Address Value

a 0x…1 4

ref — 4

ptr 0x…2 0x…1

40x…1

a

0x…10x…1

refptr

Chris Jones I Session 1: Basics of C++ 08/03/15

Differences Between Pointers and References

• Pointers can change which memory address they store

6

int a = 4;

int& ref = a;

int* ptr = &a;

int b = 5;

ptr = &b;

Chris Jones I Session 1: Basics of C++ 08/03/15

Differences Between Pointers and References

• Pointers can point to nothing
- Think of a pointer as a container that can hold 0 or 1 item

7

int* ptr = nullptr;

Chris Jones I Session 1: Basics of C++ 08/03/15

Differences Between Pointers and References

• Pointers must be dereferenced to get the associated value

8

int a = 4;

int& ref = a;
int* ptr = &a;

int b = ref; //same as b = a;
int c = *ptr; // same as c = a;

Chris Jones I Session 1: Basics of C++ 08/03/15

Changing values

• Pointers and references can modify the associated value

9

int a = 4;

int& ref = a;
ref = 5; //a == 5

int* ptr = &a;
*ptr = 6; //a == 6

Chris Jones I Session 1: Basics of C++ 08/03/15

const keyword

• const tells the compiler the value is not allowed to change

• const may appear to the left or right of the type name

10

int const a = 4;

a = 5; //compiler error

const int a = 4;

Chris Jones I Session 1: Basics of C++ 08/03/15

const with Pointers and References

• Pointers and references can refer to const variables but must
be const themselves

11

int const a = 4;

int const& ref = a;
int const* ptr = &a;

//the following will not compile
int& non_const_ref = a;
int* non_const_ptr = &a;

Chris Jones I Session 1: Basics of C++ 08/03/15

const with Pointers and References continued

• Pointers and references can refer to non-const variables
but still be const themselves

12

int a = 4;

int const& ref = a;
int const* ptr = &a;

//the following will not compile
ref = 6;
*ptr = 7;

//the following will work
a = 8; //ref == 8 and *ptr == 8

Chris Jones I Session 1: Basics of C++ 08/03/15

const and Pointers
• const can be used several ways with pointers
- const pointer: memory address can not be changed

- pointer to const: can not change associated value

- const pointer to const: can not change address or value

13

int * const ptr = &a;
ptr = &b; //compiler error
*ptr = 6; //OK

int const * ptr = &a;
ptr = &b; //OK
*ptr = 6; //compiler error

int const * const ptr = &a;

Chris Jones I Session 1: Basics of C++ 08/03/15

const and Pointers 2
• Easiest to remember by reading from right to left
- const pointer: memory address can not be changed

- pointer to const: can not change associated value

- const pointer to const: can not change address or value

14

int * const ptr

int const * ptr

int const * const ptr

Chris Jones I Session 1: Basics of C++ 08/03/15

Function arguments

• Functions arguments can be passed by
- copying the value
• changing the value in the function does not affect the original variable

- reference
• changing the value does change the value of the original variable

- pointer
• changing the value does change the value of the original variable

15

void foo(int a);

void foo(int& a);

void foo(int* a);

Chris Jones I Session 1: Basics of C++ 08/03/15

Function arguments continued

• Functions arguments can be passed by
- const references
• it is not possible to change the value of the argument

- const pointer
• it is not possible to change the value of the argument

16

void foo(int const& a);

void foo(int const* a);

Chris Jones I Session 1: Basics of C++ 08/03/15

Building Code

• Code building with C++ has two phases
- Compiling
- Linking

• cetbuildtools handles both steps for you

17

Chris Jones I Session 1: Basics of C++ 08/03/15

Compiling

• The compiler reads the source file and generates an object file

• An object file contains
- CPU instructions for the functions in the source file
- Names of the functions and global variables from the source file

• Object files normally end with the suffix .o or .os

18

Chris Jones I Session 1: Basics of C++ 08/03/15

Linking

• The linker creates a shared library from a group of object files

• A shared library contains
- All the cpu instructions from the group of object files
- Names of all the functions and global variables from the object

files

• A shared library can be linked to other shared libraries
- Linking allows a function in one shared library to use functions or

global variables from another shared library

• shared libraries normally end with the suffix .so
- On mac OS X they can also end in .dylib

19

Chris Jones I Session 1: Basics of C++ 08/03/15

Compilation Errors

• Compilation errors occur when there are syntactical problems
with your source code

• Remedy is to change your source code

20

Chris Jones I Session 1: Basics of C++ 08/03/15

Linking Errors

• Linking errors happen when the linker cannot find functions or
global variables it needs

• Remedy
- If the function is in your source file double check the spelling of its

name
- If the function is one you created be sure you defined it in a

source file
- If the function comes from somewhere else, be sure to link to the

library containing the function

21

Chris Jones I Session 1: Basics of C++ 08/03/15

Exercises

• The info on all the exercises of the course is available at
- https://cdcvs.fnal.gov/redmine/projects/art-larsoft-course/wiki/

Instructions_for_Each_Session
• If you have trouble accessing the URL
- create a temporary directory and change to it
• mkdir tmp; cd tmp

- checkout the code
• git clone http://cdcvs.fnal.gov/projects/art-
workbook-alcourse alcourse

- change to the directory
• cd alcourse

- get the correct version of the file
• git checkout -b work origin/August2015

- follow instructions in the file README

22

https://cdcvs.fnal.gov/redmine/projects/art-larsoft-course/wiki/Instructions_for_Each_Session

