2= Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Iterative Algorithm Development
Summary - conclusion and wrap-up

Sessions 18

What we’ve accomplished

« We've used a bunch of stuff from the strategy
— Finding constants
— Locating blocks of code to add functions and datatypes
— Extracting algorithm code and testing it
— Trying out different C++ facilities
* Demonstrated some utility in doing this

— Evolved and explored changes to the algorithm outside of the
framework

— Changes the clarity of the module and algorithm

2= Fermilab

But how do | start from scratch?

 Remember the last point on the strategy slides
* Produce pseudo-code that describes the algorithm
* Write the code that invokes the fictitious function

* You will likely be able to move down a couple of layers into
the function doing this.

» Eventually you will need to stop and implement pieces

2= Fermilab

Addressing bigger problems

« Starting from the top with the questions
— “how does one obtain the results from this algorithm”

— “what do | need to calculate the results”

« Always keep in mind the major general C++ design practices

— Inheritance for interfaces, not implementation
 public inheritance is not good for aggregating functionality
— Datatypes (classes) should do one thing, not many
 schizophrenia is not good
— If there is no state to be maintained and changed, a function is
certainly going to be better.
« Data members listed in the class are state
— Do not expose your guts (data members), unless the thing is a
struct.

2= Fermilab

Generally good advice

* Do not try to get it perfect the first time.

— It is easier to complete something close and apply the
techniques we used for the make combinations algorithm above

— Doing several (four or more) quick versions or iterations is
expected.

» Look for classes that already do what you want
— 4-vector class is an example

 Invent the things you need
— Invent abstractions when you encounter the need
— Not only datatypes or classes, but functions as well

2= Fermilab

Backup slides — the strategy

2= Fermilab

1- A map of the code can be useful

* Ablock diagram on a whiteboard, a bullet list, suw
or something similar %
i

« Use names as you understand them and R‘\Q%
what the code is doing skl kg, "

« Capture only relevant features such as what o
functions are called and what are the majo_M gt

core-1
relationships in the data you are processing
™ * g pa—
. report
— { B i Y} results
LR \ 3.’ | -y QRN WAST S A ‘. C A or |?gst:,l(TtSSHOK
[Gemera, Trodc . .

QN&‘ A Ay
enes 8.

4
}\%'-3 ::Q(l\ (b/\.o FUE}'

ﬁzc&i
T s, S

crbun

——

run LEM on range

4 .
Order by metadata find range of
values thetal & template events to
nhits match against using

metadata
I

NS e Load my subset of .
_— receive broadcast
template events
S [TS . event-to-match
\ | o 0 . s into memory

\o& wkm \ ST TN n e S5 i i
\2 O‘Y d.q‘?\ 5‘}*)'“‘\)’ Rank Assignment if rank0, get event
mGneal P,(P A v AR ,. & L (1_ (core within node) and broadcast .
| ' nilab

Initialize Run

2- Look for constants

« Symbolic names almost always help

* The experiment may already have a name for the constant
that should be used

 The number may be used in more than one place (or been
meant to be used in multiple places and not all have been
edited)

« Make sure it is not really a configurable parameter (or needs
to be cached)

2= Fermilab

3- Look for blocks that calculate something meaningful

« Sometimes these are prefaced by a comment explaining what
the set of statements does.

It is almost always better to have a well-named function
replace the block

* The new function will read better and can be independently
tested

2= Fermilab

4- Look for more than one level of nesting

« Think of if statements, while and for loops

« Working from the bottom up can be a useful way to tackle this one
— inmost nesting body of code to outermost

« With if/else constructs, better to have positive statement in the if

expression
well

within a loop

More than one return is okay in C++, along with continue if it is used

Use exceptions for failures requiring premature function exit - even

— This does not imply using try/catch to handle a loop exit

if(!(flat.fire(1.0)<=fQE) ||
l(fWavelen>fWavelenLow
&& fWavelen<fWavelenHigh))
++fCountOpDetOther;
else {
fThePhotonTreeDet->Fill();
++fCountOpDetDetected;

}

void CandVertex::select(ClusterList &listU,
ClusterList &listV,
ClusterList &listW) {
if (listU.uninteresting()) return;
/I rest of procesing

}

if((flat.fire(1.0)<=fQE) &&

(fWavelen>fWavelenLow) &&
(fWavelen<fWavelenHigh))

{...}else{...}

5- Look for repeated blocks or lines of code

« That only differ in
— starting or ending points
— data being addressed or used
« Obvious candidates for new functions

« Don’t forget about the function template and local
functions here!

2= Fermilab

6- Write a unit test that validates that the algorithm is working

« This will also test your knowledge of the class or function.

« If this is a difficult task, it might indicate that the functions
IS doing too much or requires to many facilities to be very
useful.

2= Fermilab

7- Apply standard idioms and practices

» Many of these covered on the first morning

- RAlIl
* No bare pointers

« Prefer range-for to other for-loops

« Standard algorithms are also fun and easy to use now!
— modern C++ makes this possible

* Arguments and return values
— Pass big things by const-ref
— return vectors by value (new with modern C++)

class Login {

public:

Login(Database™ db,

std::string const& user):

conn(db->connect(user))
~Login() { conn-

>disconnect(); }

private:

DB::Connection* conn;

;

for(auto const& phot: theHit) {
phot.process_me();
}

std::transform(x.begin(),x.end(), y.begin(),
[&](double d) { return d + nd(enQ); });

int* ip1 = new int(3); // bad

std::shared_ptr<int> ip2(new int(3)); // ok, but see below
std::unique_ptr<int> ip3(new int(3)); // good

auto ip5 = std::make_shared<int>(3); // preferred

8- Don’t hand-code things that the language will do for you
automatically

* Do not write code for functions that the compiler will correctly
generate for you

— copy ctor, default ctor, destructor, etc. SymsVec out = find_syms|();

« No manual memory management sort(out.begin(),out.end());
— should never see delete in the middle of a function
« Sorting, hash tables, set operations,

« random numbers <random>, time manipulations <chrono>,
regular expressions <regex>

std::default_random_engine gen; std::smatch m;
std::weibull_distribution<double> std:iregex e ("(L_HitData_)([0-9]+)(.+)");
dist(1.2,300); std::string hithname = find_hit_name(i);
double n = dist(gen); myfiles_hit.push_back(hithame);
std::regex_search (hithame,m,e);
cout << "number =" << m[2] << "\n";

std::chrono::time_point<std::chrono::system_clock> begin = std::chrono::system_clock::now();
double answer = calculate();

std::chrono::time_point<std::chrono::system_clock> end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed seconds = end-begin;

std::time_t ending_time = std::chrono::system_clock::to_time t(end);

9- The way you describe an algorithm or module to someone
else might be the ideal way to express it in code.

* Do not need to have all the underlying functions in an
algorithm written

— Can just pretend they exist.

 Introduce a new class (datatype) if there is state to be
maintained.

— Think of int or double as a simple class that maintains one
piece of data and has many operations defined on it.

2= Fermilab

