
Iterative Algorithm Development 
Summary – conclusion and wrap-up 

Sessions 18

What we’ve accomplished

•  We’ve used a bunch of stuff from the strategy
–  Finding constants
–  Locating blocks of code to add functions and datatypes
–  Extracting algorithm code and testing it
–  Trying out different C++ facilities

•  Demonstrated some utility in doing this
–  Evolved and explored changes to the algorithm outside of the

framework
–  Changes the clarity of the module and algorithm

But how do I start from scratch?

•  Remember the last point on the strategy slides
•  Produce pseudo-code that describes the algorithm
•  Write the code that invokes the fictitious function
•  You will likely be able to move down a couple of layers into

the function doing this.
•  Eventually you will need to stop and implement pieces

Addressing bigger problems

•  Starting from the top with the questions
–  “how does one obtain the results from this algorithm”
–  “what do I need to calculate the results”

•  Always keep in mind the major general C++ design practices
–  Inheritance for interfaces, not implementation

•  public inheritance is not good for aggregating functionality
–  Datatypes (classes) should do one thing, not many

•  schizophrenia is not good
–  If there is no state to be maintained and changed, a function is

certainly going to be better.
•  Data members listed in the class are state

–  Do not expose your guts (data members), unless the thing is a
struct.

Generally good advice

•  Do not try to get it perfect the first time.
–  It is easier to complete something close and apply the

techniques we used for the make combinations algorithm above
–  Doing several (four or more) quick versions or iterations is

expected.
•  Look for classes that already do what you want

–  4-vector class is an example
•  Invent the things you need

–  invent abstractions when you encounter the need
–  Not only datatypes or classes, but functions as well

Backup slides – the strategy

Grunt5
Grunt4

Grunt3
Grunt2

Grunt1
core-N

core-1

Rank Assignment
(core within node)

Load my subset of
template events

into memory

Order by metadata
values theta1 &

nhits

receive broadcast
event-to-match

find range of
template events to

match against using
metadata

run LEM on range

sort by best 10K
results

all-reduce to merge
results from me to
find overall best

Initialize Run

if rank0, get event
and broadcast

if rank0,
report
results

1- A map of the code can be useful

•  A block diagram on a whiteboard, a bullet list,
or something similar

•  Use names as you understand them and
what the code is doing

•  Capture only relevant features such as what
functions are called and what are the major
relationships in the data you are processing

2- Look for constants

•  Symbolic names almost always help
•  The experiment may already have a name for the constant

that should be used
•  The number may be used in more than one place (or been

meant to be used in multiple places and not all have been
edited)

•  Make sure it is not really a configurable parameter (or needs
to be cached)

3- Look for blocks that calculate something meaningful

•  Sometimes these are prefaced by a comment explaining what
the set of statements does.

•  It is almost always better to have a well-named function
replace the block

•  The new function will read better and can be independently
tested

4- Look for more than one level of nesting
•  Think of if statements, while and for loops
•  Working from the bottom up can be a useful way to tackle this one

–  inmost nesting body of code to outermost
•  With if/else constructs, better to have positive statement in the if

expression
•  More than one return is okay in C++, along with continue if it is used

well
•  Use exceptions for failures requiring premature function exit - even

within a loop
–  This does not imply using try/catch to handle a loop exit

if(!(flat.fire(1.0)<=fQE) ||
 !(fWavelen>fWavelenLow
&& fWavelen<fWavelenHigh))
 ++fCountOpDetOther;
else {
 fThePhotonTreeDet->Fill();
 ++fCountOpDetDetected;
 }

if((flat.fire(1.0)<=fQE) &&
 (fWavelen>fWavelenLow) &&
(fWavelen<fWavelenHigh))
 { … } else { … }

void CandVertex::select(ClusterList &listU,
 ClusterList &listV,
 ClusterList &listW) {
 if (listU.uninteresting()) return;
 // rest of procesing
}

5- Look for repeated blocks or lines of code

•  That only differ in
–  starting or ending points
–  data being addressed or used

•  Obvious candidates for new functions
•  Don’t forget about the function template and local

functions here!

6- Write a unit test that validates that the algorithm is working

•  This will also test your knowledge of the class or function.
•  If this is a difficult task, it might indicate that the functions

is doing too much or requires to many facilities to be very
useful.

7- Apply standard idioms and practices
•  Many of these covered on the first morning
•  RAII
•  No bare pointers
•  Prefer range-for to other for-loops
•  Standard algorithms are also fun and easy to use now!

–  modern C++ makes this possible
•  Arguments and return values

–  Pass big things by const-ref
–  return vectors by value (new with modern C++)

class Login {
public:
 Login(Database* db,

 std::string const& user):
 conn(db->connect(user))
 ~Login() { conn-
>disconnect(); }
private:
 DB::Connection* conn;
};

int* ip1 = new int(3); // bad
std::shared_ptr<int> ip2(new int(3)); // ok, but see below
std::unique_ptr<int> ip3(new int(3)); // good
auto ip5 = std::make_shared<int>(3); // preferred

for(auto const& phot: theHit) {
 phot.process_me();
}

std::transform(x.begin(),x.end(), y.begin(),
 [&](double d) { return d + nd(eng); });

8- Don’t hand-code things that the language will do for you
automatically
•  Do not write code for functions that the compiler will correctly

generate for you
–  copy ctor, default ctor, destructor, etc.

•  No manual memory management
–  should never see delete in the middle of a function

•  Sorting, hash tables, set operations,
•  random numbers <random>, time manipulations <chrono> ,

regular expressions <regex>
std::default_random_engine gen;
std::weibull_distribution<double>
dist(1.2,300);
double n = dist(gen);

SymsVec out = find_syms();
sort(out.begin(),out.end());

std::smatch m;
std::regex e ("(L_HitData_)([0-9]+)(.+)");
std::string hitname = find_hit_name(i);
myfiles_hit.push_back(hitname);
std::regex_search (hitname,m,e);
cout << "number = " << m[2] << "\n";

std::chrono::time_point<std::chrono::system_clock> begin = std::chrono::system_clock::now();
 double answer = calculate();
 std::chrono::time_point<std::chrono::system_clock> end = std::chrono::system_clock::now();
 std::chrono::duration<double> elapsed_seconds = end-begin;
 std::time_t ending_time = std::chrono::system_clock::to_time_t(end);

9- The way you describe an algorithm or module to someone
else might be the ideal way to express it in code.

•  Do not need to have all the underlying functions in an
algorithm written
–  Can just pretend they exist.

•  Introduce a new class (datatype) if there is state to be
maintained.
–  Think of int or double as a simple class that maintains one

piece of data and has many operations defined on it.

