2= Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Session 13:
A Simple Producer Module
Rob Kutschke

art and LArSoft Course
August 5, 2015

Preliminaries

* Thanks to everyone who filled out the surveys!

 If you have not already done so, we hope that you can find
some time today to fill out:
— For Monday: http://goo.gl/forms/TWTHjuVKkG1
— For Tuesday: http://goo.gl/forms/EePgePbZNJ

2= Fermilab

2 Kutschke/Session 13: A Simple Producer 8/5/2015

In this Session You will Learn

* A4 part mantra for writing a producer module that produces
one data product

— A producer may produce as many data products as it wants
— Just repeat the steps
* How to get data products with instance names from the event

2= Fermilab

3 Kutschke/Session 13: A Simple Producer 8/5/2015

Part 1: Inherit from art: :EDProducer

#include "art/Framework/Core/EDProducer.h”

namespace tex {
class Prod : public art::EDProducer {
public:
explicit Prod(fhicl::ParameterSet const& pset);
void produce(art::Event& event) override;

5

}

* Analyzer modules inherit from art: :EDAnalyzer

* The called-every-event member function is called produce,
not analyze.

2= Fermilab

4 Kutschke/Session 13: A Simple Producer 8/5/2015

Part 2: non-const Arguments

void produce(art::Event& event) override;

void analyze(art::Event const& event) override;

* Analyzer modules have only const access to the event.
* Producer modules have full access to the event

— They may add new data products

— They may NOT modify existing data products

« Similarly for arguments of beginRun/endRun etc

2= Fermilab

5 Kutschke/Session 13: A Simple Producer 8/5/2015

Part 3: Call produces() in the Constructor

#tinclude "toyExperiment/MCDataProducts/IntersectionCollection.h”

tex::Prod::Prod(fhicl::ParameterSet const&){
produces<IntersectionCollection>();

}

 produces is a member function found somewhere in the
Inheritance tree

— It tells art what types this module is allowed to produce
— It must be called in the constructor

* The template argument is the data type that will be produced.
— data type = name of class, struct, typedef

2= Fermilab

6 Kutschke/Session 13: A Simple Producer 8/5/2015

Part 4: Get/Do/Put In the produce Member Function

// Default construct an empty data product
auto output = std::make_unique<IntersectionCollection>();

// ... do the work to fill the data product

// Give the data product to the event
event.put(std::move(output));

 The type of output is
std::unique ptr<IntersectionColllection>

* There is no need to use new!

2= Fermilab

7 Kutschke/Session 13: A Simple Producer 8/5/2015

Remember the toy Experiment

(run: 1 subRun: 0 event: 1) Yvs X (run: 1 subRun: O event: 1) Rvs Z

T [1§00_
ool E L
- 1000—
i / -
500 — -
- 800—
0 600—
- 400—
-500— / -
- / -
L Ve L
L 200—
-1000— -

i | I | | | | | | | | | | | | | | I | | | | | | i | | | | | | | | | | I | | | I | | |

-1000 -500 0 500 1000 Bo0o 400 200 0 200 400 600
[mm] [mm]

Intersections shown as filled circles.

2= Fermilab

8 Kutschke/Session 13: A Simple Producer 8/5/2015

Aside: The Naming of Data Products

« Each data product has a name that has 4 fields, separated by
underscores. The order is:

— The name of the data type (in a “friendly” format).
— Module label of the module that created it
— Instance name

— Process name of the process that created it

« The instance name is used if a producer makes more than
one data product of the same type.

— ltis legal for an instance name to be an empty string

« The data product name is used as the name of the TBranch
that holds the data product in the ROOT file.

2= Fermilab

9 Kutschke/Session 13: A Simple Producer 8/5/2015

There are two Data Products Used in this example

 In the jobs that created the input files used by the workbook,
the module label detsim produced two data products:

— All of the intersection objects for the inner 5 layers

— All of the intersection objects for the outer 10 layers

— Both have the same data type, tex::IntersectionCollection

— Both produced by the same module label and process name

— The two data products have instance names of inner and outer.
 Inan art::InputTag: “module_labeliinstance_name”

— For example:

innerTag : “detsim:inner”
outerTag : “detsim:outer”

2= Fermilab

10 Kutschke/Session 13: A Simple Producer 8/5/2015

See for Yourself

* (If needed, login and setup everything)
 In your build window look at the data products in the input file:

art -c fcl/FileDumper/fileDumperFriendly.fcl
—s inputFiles/inputOl.art

« This is one long line, not two short ones.

 There is a discussion about this file in
FirstProducer/README

2= Fermilab

11 Kutschke/Session 13: A Simple Producer 8/5/2015

FirstProducer/Concatenatelntersections1 _module.cc

class Concatenatelntersectionsl : public art::EDProducer {
public:

explicit Concatenatelntersections1(fhicl::ParameterSet const& pset);
void produce(art::Event& event) override;

private:

// Input tags for the two input data products.
art::InputTag innerTag_;
art::InputTag outerTag_;

Iy

« As usual, input tags for are initialized in the c’tor, by getting
them from the parameter set.

2= Fermilab

12 Kutschke/Session 13: A Simple Producer 8/5/2015

Create, Fill and Put the Ouptut Data Product

void tex::Concatenatelntersectionsl::produce(art::Event& event){

auto inner = event.getValidHandle<IntersectionCollection>(innerTag_);
auto outer = event.getValidHandle<IntersectionCollection>(outerTag_);

// Create empty data product and reserve the required size.
auto output = std::make_unigue<IntersectionCollection>();
output->reserve(inner->size()+outer->size());

// Fill the data product
output->insert(output->end(), inner->begin(), inner->end());
output->insert(output->end(), outer->begin(), outer->end());

// Add the product to the event
event.put(std::move(output));

}

2= Fermilab

13 Kutschke/Session 13: A Simple Producer 8/5/2015

Run the Exercise

e Run it:

art -c fcl/FirstProducer/producerl.fcl

* Look at the data products in the output file:

art -c fcl/FileDumper/fileDumperFriendly.fcl
—s output/concatenateIntersectionsl.art

 Read the discussion in FirstProducer/README

2= Fermilab

14 Kutschke/Session 13: A Simple Producer 8/5/2015

After event.put() the unique_ptr is no longer valid

After the call to:

event.put(std::move(output));
The variable output is invalid.
— It no longer points at anything

— This is a security feature: art makes it difficult to modify a data
product after you have given it to the event.

This is illustrated in:

— FirstProducer/Concatenatelntersections2_module.cc
— To run it:

art -c fcl/FirstProducer/producer2.fcl

— Then read the discussion in the README

2= Fermilab

15 Kutschke/Session 13: A Simple Producer 8/5/2015

Errors

* One producer can make many different data products.
* In the c’tor there needs to be a call to produces<T> for
each type that you plan to produce.
— If you produce many data products of the same type, you only
need one call for that type.

* If you call event.put on a data product of a type for which
there is no all to produces<T>, art will throw an exception
and attempt graceful shutdown.

2= Fermilab

16 Kutschke/Session 13: A Simple Producer 8/5/2015

A bug to fix:

17

Look at the code in
* FirstProducer/Concatenatelntersections3_module.cc
e Run it with:

art -c fcl/FirstProducer/producer3.fcl

This produces a run-time error
Find and fix it
The answer is in the README

Kutschke/Session 13: A Simple Producer

8/5/2015

2= Fermilab

Using art::Event::getManyByType<T>

« There is another way to get the two input collections from the
event.

* You can ask art to give you a vector of Handles to all data
products of a given type.
* This is illustrated in

* FirstProducer/Concatenatelntersections4_module.cc
e Run it with:

art -c fcl/FirstProducer/producer4.fcl

2= Fermilab

18 Kutschke/Session 13: A Simple Producer 8/5/2015

Using and Producing in-Run Data Products

» FirstProducer/Concatenatelntersections5_module.cc
— Shows how to create a data product that lives in the run object

— Follow the same pattern with Run -> SubRun to create a data
product that lives in the SubRun object.

— To run it:

art -c fcl/FirstProducer/producer5.fcl

— Read the discussion in the README

2= Fermilab

19 Kutschke/Session 13: A Simple Producer 8/5/2015

Questions so Far?

2= Fermilab

20 Kutschke/Session 13: A Simple Producer 8/5/2015

Get Started

« (Go to your source directory
 Read art-workbook/FirstProducer/README

* Read section O first. It tells you how to update your git
repository and rebuild before continuing.

2= Fermilab

21 Kutschke/Session 13: A Simple Producer 8/5/2015

Backup Slides:

2= Fermilab

22 Kutschke/Session 13: A Simple Producer 8/5/2015

