
LArSoft algorithms and services

Gianluca Petrillo

University of Rochester/Fermilab

art /LArSoft course
Fermilab, August 3–7, 2015

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 1 / 46

Outline

1 Design principles

2 The mortar: services
LArSoft services

3 The bricks: simulation, reconstruction, analysis algorithms
LArSoft modules

4 Introduction to The Exercise

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 2 / 46

Outline

1 Design principles

2 The mortar: services
LArSoft services

3 The bricks: simulation, reconstruction, analysis algorithms
LArSoft modules

4 Introduction to The Exercise

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 3 / 46

What is LArSoft

LArSoft
A toolkit to facilitate simulation, reconstruction and analysis of events
from liquid-argon TPC-based detectors.

Stress on:
toolkit a set of instruments: data structures, algorithms, services

facilitate includes many aspects:
easy to use: recurrent interfaces, documentation
easy to maintain: enables quick testing
not tied to a specific execution environment
fast development cycle (change/compile/test/run)

detectors ⇒ generic enough to work with any liquid argon TPC

LArSoft content is contributed by: you!
You have a determinant role in helping it reach these goals.

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 4 / 46

Outline

1 Design principles

2 The mortar: services
LArSoft services

3 The bricks: simulation, reconstruction, analysis algorithms
LArSoft modules

4 Introduction to The Exercise

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 5 / 46

LArSoft services

Most of LArSoft services are factorized into two parts:
service provider actually providing services

It can be used stand-alone (without art framework)
⇒ e.g. for a minimalist test environment

configuring it correctly and keeping it updated with
the current event may be complex

art service interfacing the provider with the art framework
initializes the provider correctly
keeps it up to date with the current event and run

This factorization model allows service providers to be tested without
pulling in art framework, and to be used in art-unaware environments.

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 6 / 46

Using service providers

Most of the user code should interact only with the provider interface:
1 grab the service provider (for art services that have one):

#include "art/Framework/Services/Registry/ServiceHandle.h"
#include "Geometry/GeometryCore.h"

void MyModule::analyze(art::Event const& event) {
geo::GeometryCore const& geom
= *art::ServiceHandle<geo::Geometry>()>;

/* ... */
}

Listing 1: Obtaining the geometry service provider, geo::GeometryCore

2 use it, move it around, pass it to algorithms:

for (geo::PlaneID const& planeID: geom.IteratePlaneIDs()) {
/* ... */

}

Listing 2: Using geometry provider to iterate through all wire planes in the detector

There may be additional ways to access the service provider
functionalities, depending on the specific service.
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 7 / 46

LArSoft services: geometry

Provides a description of the physical and readout aspects of the
detector:
TPC structure physical characteristics of cryostats, TPCs, wire planes

and wires and their relations
optical detector structure
readout channel mappings

TPCs (e.g. readout channels to physical wires)
optical readout channels with photodetectors

auxiliary detectors (e.g. plastic muon detectors)
(being moved into its own service AuxDetGeometry)

art service geo::Geometry larcore/Geometry/

service provider geo::GeometryCore larcore/Geometry/

geo::GeometryCore const& geom = *(art::ServiceHandle<geo::Geometry>());

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 8 / 46

LArSoft services: physical properties

Two services provide information about physical properties:
DetectorProperties pertaining mostly readout

readout sampling rates, readout window size
conversion between readout ticks and times

LArProperties about the liquid argon environment
drift velocity, dQ/dx → dE/dx
electron “lifetime”, radiation length, argon
temperature...

art service util::DetectorProperties lardata/Utilities/

service provider not available yet
art service util::LArProperties lardata/Utilities/

service provider not available yet

util::DetectorProperties const& detProp
= &*art::ServiceHandle<util::DetectorProperties>();

util::LArProperties const& detProp
= &*art::ServiceHandle<util::LArProperties>();

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 9 / 46

LArSoft services: database, timing, etc.

Other services deal with different aspects:
DatabaseUtil sets up database connections for other services and

algorithms; you typically don’t interact with it directly
TimeService provides a coherent view of times in the event related

to the beam trigger
LArFFT facilitates the application of Fourier transform in simulation

of TPC signals and their calibration (e.g. noise reduction)

art service util::TimeService lardata/Utilities/

service provider util::SimpleTimeService lardata/Utilities/

art service util::LArFFT lardata/Utilities/

service provider not available yet

util::SimpleTimeService const& timeSrv
= &*art::ServiceHandle<util::TimeService>(); // automatic conversion

util::LArFFT const& FFT
= &*art::ServiceHandle<util::LArFFT>();

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 10 / 46

LArSoft services: simulation

Some services are mostly used in physics simulation:
LArVoxelCalculator helps with computations in the virtual grid

GEANT splits the detector volume into (“voxels”)
LArG4Parameters stores the parameters GEANT is configured with
PhotonVisibilityService describes the simulation of the

transportation of photons to the optical detectors
SpaceCharge describes the effect of distortions of TPC’s electric field

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 11 / 46

LArSoft services: channel quality

A service is going to be introduced soon:
ChannelFilterService delivers information about quality of TPC

channels: bad, noisy... even good ones.

art service filter::ChannelFilterService larevt/Filters/

service provider filter::ChannelFilterProvider larevt/Filters/

filter::ChannelFilterProvider> const& chanFilt
= art::ServiceHandle<filter::ChannelFilterService>()->GetProvider();

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 12 / 46

Abstract service interfaces

This service implements an abstract service interface pattern:
both ChannelFilterService and ChannelFilterProvider
only describe what can be asked: they only expose an interface
each experiment chooses which specific implementation to use for
the service, to specify how to answer the requests

A typical service configuration will include the implementation type:

services.ChannelFilterService: {
service_provider: SimpleChannelFilterService

list of bad channels:
BadChannels: [22, 65, 237, 307, 308, 309, 310, 311, 410, 412, ...]
...

}

Listing 3: Possible configuration of ChannelFilterService for ArgoNeuT

where filters::SimpleChannelFilterService is an
implementation of filter::ChannelFilterService interface.

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 13 / 46

Outline

1 Design principles

2 The mortar: services
LArSoft services

3 The bricks: simulation, reconstruction, analysis algorithms
LArSoft modules

4 Introduction to The Exercise

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 14 / 46

Algorithms

An algorithm is a piece of code that:
performs one single task
so that it can be a component of many execution paths
must be thoroughly documented:
what it needs, what it does (with a bit of how and why), its
assumptions, what it produces, how to configure it
needs a complete test
so that it’s easy to detect if it gets (or is from the beginning) broken

In addition, a LArSoft algorithm:
should be able to perform its task using only:

1 LArSoft data products and their associations
2 services provided by LArSoft
3 output from other algorithms

similarly, it should produce only:
1 LArSoft data products and their associations
• (ok, ok, also histograms)

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 15 / 46

Algorithms

A LArSoft algorithm:
is implemented as a self-standing class:
one header file, one implementation file, minimal dependencies

#ifndef CLUSTER_MYCLUSTERINGALG_H
#define CLUSTER_MYCLUSTERINGALG_H

namespace cluster {
class MyClusteringAlg {

public:
/* ... */

}; // class MyClusteringAlg
} // namespace cluster

#endif // CLUSTER_MYCLUSTERINGALG_H

Listing 4: Cluster/MyClusteringAlg.h: class header file

#include "Cluster/MyClusteringAlg.h"

cluster::MyClusteringAlg::MyClusteringAlg(fhicl::ParameterSet const&) {
/* ... */

} // cluster::MyClusteringAlg::MyClusteringAlg()

Listing 5: Cluster/MyClusteringAlg.cxx: class implementation file
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 16 / 46

Algorithms

A LArSoft algorithm:
is implemented as a self-standing class
has constructor configured by FHiCL parameter set

#include "fhiclcpp/ParameterSet.h"
// ...
class MyClusteringAlg {

public:
explicit MyClusteringAlg(fhicl::ParameterSet const& pset);

}; // class MyClusteringAlg

Listing 6: MyClusteringAlg class: constructor

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 17 / 46

Algorithms

A LArSoft algorithm:
is implemented as a self-standing class
has constructor configured by FHiCL parameter set
has a setup phase to get service providers (e.g. detector
geometry)

#include "Geometry/GeometryCore.h"
// ...
class MyClusteringAlg {

public:
explicit MyClusteringAlg(fhicl::ParameterSet const& pset);

void Setup(geo::GeometryCore const* geo);
}; // class MyClusteringAlg

Listing 7: MyClusteringAlg class: setup methods

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 18 / 46

Algorithms

A LArSoft algorithm:
is implemented as a self-standing class
has constructor configured by FHiCL parameter set
has a setup phase to get service providers
has an input phase, a running phase, an output phase

#include "RecoBase/Hit.h"
#include "RecoBase/Cluster.h"
#include <vector>
// ...
class MyClusteringAlg {

public:
explicit MyClusteringAlg(fhicl::ParameterSet const& pset);

void Setup(geo::GeometryCore const* geo);

void SetHits(std::vector<recob::Hit> const& hits);
void Run();
void GetClusters(std::vector<recob::Cluster>& clusters);

}; // class MyClusteringAlg

Listing 8: MyClusteringAlg class: algorithm methods

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 19 / 46

Algorithms

A LArSoft algorithm:
is implemented as a self-standing class
has constructor configured by FHiCL parameter set
has a setup phase to get service providers
has an input phase, a running phase, an output phase (may be
combined)

#include "RecoBase/Hit.h"
#include "RecoBase/Cluster.h"
#include <vector>
// ...
class MyClusteringAlg {

public:
explicit MyClusteringAlg(fhicl::ParameterSet const& pset);

void Setup(geo::GeometryCore const* geo);

std::vector<recob::Cluster> ComputeClusters
(std::vector<recob::Hit> const& hits);

}; // class MyClusteringAlg

Listing 9: MyClusteringAlg class: algorithm methods

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 20 / 46

Algorithms

A LArSoft algorithm:
is implemented as a self-standing class
has constructor configured by FHiCL parameter set
has a setup phase to get service providers
has an input phase, a running phase, an output phase
uses LArSoft data structures

#include "RecoBase/Hit.h"
#include "RecoBase/Cluster.h"
#include <vector>
// ...
class MyClusteringAlg {

public:
explicit MyClusteringAlg(fhicl::ParameterSet const& pset);

void Setup(geo::GeometryCore const* geo);

std::vector<recob::Cluster> ComputeClusters
(std::vector<recob::Hit> const& hits);

}; // class MyClusteringAlg

Listing 10: MyClusteringAlg uses LArSoft data products and services

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 21 / 46

Algorithms

A LArSoft algorithm:
is implemented as a self-standing class
has constructor configured by FHiCL parameter set
has a setup phase to get service providers
has an input phase, a running phase, an output phase
uses LArSoft data structures
comes with documentation (and a test!)

/**
* @brief My clustering algorithm

*
* Designed for events that have this and that. More information at:

* http://some.public.enough.place/or/inspire/document

*
* Configuration parameters

* =========================

*
* - *Threshold* (real, default: 2): minimum threshold [MeV]

*/
class MyClusteringAlg {
float Threshold; ///< the threshold [MeV]
/* ... */

}; // class MyClusteringAlg

Listing 11: MyClusteringAlg documentation

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 22 / 46

Code factorization

none of this depends on the framework (art or otherwise)
no art::Handle s, no art::ServiceHandle s ...

the algorithm can be run in a bare test environment:

int main() {
fhicl::ParameterSet algo_config;
fhicl::make_ParameterSet("Threshold: 35.5", algo_config);
MyClusteringAlg algo(algo_config);
std::vector<recob::Hit> hits;
// add some input...
hits.emplace_back(1 /* channel */, 25 /* start tick */, ...);
std::vector<recob::Cluster> clusters = algo.ComputeClusters(hits);
std::cout << clusters.size() << " clusters!" << std::endl;
return clusters.empty()? 1: 0; // non-zero means error

} // main()

Listing 12: MyClusteringAlg test stub (pretending no Setup() needed)

⇒ the algorithm needs a broker to communicate with the framework
modules are art ’s brokers

This is another facet of the factorization model.
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 23 / 46

Modules (I)

To use a LArSoft algorithm in art , a module is needed:

#include "Clusters/MyClusteringAlg.h"

/// Documentation about the configuration goes here
class MyClustering: public art::EDProducer {
std::unique_ptr<cluster::MyClusteringAlg> algo;
art::InputTag inputHits;

public:
explicit MyClustering(fhicl::ParameterSet const& pset);

virtual void produce(art::Event const& event) override;
}; // class MyClustering

Listing 13: MyClustering_module.cc: MyClustering declaration

MyClustering::MyClustering(fhicl::ParameterSet const& pset)
: algo(new MyClusteringAlg(pset.get<fhicl::ParameterSet>("Params")))
, inputHits(pset.get<art::InputTag>("InputHit"))

{
produces<std::vector<recob::Cluster>>();

}

Listing 14: MyClustering_module.cc: MyClustering constructor

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 24 / 46

Modules (II)

A possible implementation of the module produce():
void MyClustering::produce(art::Event const& event) {
// the services for setup
geo::GeometryCore const* geom

= art::ServiceHandle<geo::Geometry>()->GetProviderPtr();

algo->Setup(geom);

// the input data
art::ValidHandle<std::vector<recob::Hit>> hits

= event.getValidHandle<std::vector<recob::Hit>>(inputHits);
// the output data
std::unique_ptr<std::vector<recob::Cluster>> clusters

= new std::vector<recob::Cluster>;

*clusters = algo->ComputeClusters(hits);

event.put(std::move(clusters));

} // MyClustering::produce()

Listing 15: MyClustering_module.cc: MyClustering::produce()

In this case, one should also produce hit/cluster associations.
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 25 / 46

LArSoft: physics event generation

Many generator modules are present. The most commonly used are:
SingleGen generates a single particle
GenieGen generates neutrino interactions with GENIE generator
CosmicGen generates cosmic rays with CRY generator
TextFileGen reads events already generated in HEPEVT format
RadioGen generates events from “radiological” noise

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 26 / 46

LArSoft: detector simulation

LArG4 module performs the simulation of the TPC detectors:

physics reactions of the particles crossing the
detector with GEANT (currently version 4.9.6)
transportation of the charge produced in the argon
volume to the readout wires

MCReco module (algorithms sim::MCShowerRecoAlg and
sim::MCTrackRecoAlg) produces special track and
shower objects that can be used as reference to evaluate
the reconstruction algorithms

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 27 / 46

LArSoft: hit finding

Hit finder modules live in larreco/HitFinder:

GausHitFinder will draw
Gaussians to fit the calibrated
waveform; each Gaussian be-
comes a hit:

HitFinder also draws Gaus-
sians, but it’s tuned differently and
it’s faster; on failure, it produces a
“crude hit”

t [ticks]
4340 4360 4380 4400 4420 4440 4460

q
[A

D
C

]

10−
0

10
20
30
40
50
60

t [ticks]
4340 4360 4380 4400 4420 4440 4460

q
[A

D
C

]

10−
0

10
20
30
40
50
60

LineCluster “refines” hits with
additional knowledge from cluster
topology

RawHitFinder compares the
raw, uncalibrated waveform with
fixed thresholds; when a thresh-
old is passed, a hit is created

t [ticks]
4340 4360 4380 4400 4420 4440 4460

q
[A

D
C

]

10−
0

10
20
30
40
50
60

t [ticks]
4340 4360 4380 4400 4420 4440 4460

q
[A

D
C

]

0
20
40
60
80

100
120

MCHitFinder creates special hits from simulated energy deposit,
binding a hit to a simulated particle.
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 28 / 46

LArSoft: cluster finding

DBcluster (density-based spatial clustering of applications with
noise) clusters hits that have density above threshold; it
has few parameters and works with any cluster shape.

fuzzyCluster uses flame clustering (a refined DBSCAN) as
pre-clustering, and applies Hough transform to each
precluster to identify aligned hits; best performances on
track-like clusters.

LineFinder (MicroBooNE Doc2831) tracks back long clusters from
the “far end” (beam-wise) of the TPC, considering
additional information on the neighborhood (e.g.
something looking like a vertex) and energy deposit; best
performances on track-like clusters.

BlurredClustering smears hit charge on a wire plane to create a
smooth charge map and then clusters all “pixels” with
charge above threshold.

...
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 29 / 46

https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/FLAME_clustering
https://en.wikipedia.org/wiki/Hough_transform
http://microboone-docdb.fnal.gov:8080/cgi-bin/RetrieveFile?docid=2831&filename=Cluster%20Crawler%20Manual.pdf&version=3

LArSoft: track finding (I)

Many tracking algorithms start from “seeds”, small 3D segments:
Track3DKalmanHit applies a 3D Kalman filter to 2D hits, including

Coulomb scattering in its prediction of where the track is
going to develop

Track3DKalmanSPS also implements a Kalman filter, but based on
3D “space points”, previously reconstructed from 2D hits

BezierTrackerModule connects seeds by a Bézier curve

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 30 / 46

https://en.wikipedia.org/wiki/Kalman_filter

LArSoft: track finding (II)

Others are based on 2D clusters, treated as whole entities:
CosmicTracker correlates clusters from different views (that is, wire

planes) by comparing their charge distribution
CCTrackMaker puts together the rich information from LineFinder

and correlates clusters by means of their slopes and
charge deposit at their ends

And there are more...
PMAlgTrackMaker (AHEP 2013, 260820) matches track 2D

projections to hits, simultaneously in all wire planes
...

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 31 / 46

http://dx.doi.org/10.1155/2013/260820

LArSoft: shower and vertex finding

ShowerReco3D uses a mini-framework that matches clusters from 2
or 3 views:

based on their time (x coordinate)
prefers higher number of hits and ignores “track-like”
clusters

and then applies energy calibration and reconstructs
shower dE/dx

VertexFinder2D reconstructs vertices from long clusters on each
view, then matches them

FeatureVertex produces “proto-vertices” by view matching, and
ranks them by proximity to corners found by image
processing

LineCluster also reconstructs vertices in its crawling

... what?! only one shower reconstruction algorithm??

No... but almost. There is a lot of effort ongoing on this algorithm and
on a few other approaches. It’s just more complicate.
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 32 / 46

LArSoft interface to Pandora

Pandora is a pattern recognition toolkit developed at Cambridge:
development started with Linear Collider tracking in mind
internally, uses a lot of simple pattern recognition algorithms
reconstructs hierarchies of particles (particle flow) from hits

– characterizes each particle as track-like or shower-like
– connects a particle with its daughters
– associates clusters and 3D points to each particle

communicates with LArSoft through a module
(LArPandoraParticleCreator)

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 33 / 46

LArSoft: secondary reconstruction and analysis

Further levels of reconstruction are also present:
3D clustering pulling together a 3D cluster without passing through 2D

ones
trigger reconstruction of collective optical signals (“flashes”)

calorimetry to calibrate the energy deposit of tracks and showers
particle identification including also cosmic ray identification
your algorithm doing cool stuff, coming soon

(I did not write all this code: it comes from the experiments!)

A lot of “analyser” modules are spread in and out of LArSoft:
dumpers to show in text the content of data products
plotters extracting distributions used for algorithm validation
conversion to other formats: ROOT trees, JSON (that’s in art ,
really), LArLite...

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 34 / 46

Outline

1 Design principles

2 The mortar: services
LArSoft services

3 The bricks: simulation, reconstruction, analysis algorithms
LArSoft modules

4 Introduction to The Exercise

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 35 / 46

Exercise: write a cluster selector

“Write a module selecting clusters with large width.”

The new module
receives an existing cluster list as input
produces a new list with only the clusters that have width larger
than a configurable value
comes with a FHiCL configuration file executing this producer
[optional] produces a list of rejected, narrow clusters
[optional] produces associations between new clusters and hits1

1Note: you can’t associate the old and new clusters: art::Assns does not
support same-type associations.
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 36 / 46

Details for the exercise

follow the prescriptions of factorization:
1 an algorithm performing the filtering
2 a separate module as interface between that algorithm and art

follow the prescriptions of maintainability:
1 drop comments about the meaning of the code
2 document the interface of the algorithm and module

follow the prescriptions of interoperability:
1 make sure nothing in your algorithm assumes a specific detector

feature

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 37 / 46

Starting point

the area you have set up with larexamples is suitable for this
exercise
skeleton source is available in larexamples’s branch
School2015 under the directory in two versions under
${MRB_SOURCE}/larexamples/producers/skel:
detailed/ contains structure for all both classes and for the

implementation of their methods
bare/ contains structure for the module, and allows for a lot

of freedom in the algorithm
Pick your style and start by copying the 5 files in the producers
directory.
an input file is accessible via alcourse?.fnal.gov machines,
at:
/home/larsoft/course_data/AnalysisExampleInput.root
(yes, it’s the same as for the previous exercise)

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 38 / 46

LArSoft data products: recob::Cluster

What is inside a recob::Cluster?
ID() a number to identify this cluster

Plane() ID of the wire plane where the cluster lies
View() wire orientation (u, v , z)

StartWire(), StartTick() one end of the cluster: wire number
and time

EndWire(), EndTick() the other end of the cluster (as above)
NHits() number of hits in the cluster
Width() width of the cluster, in centimetres

Integral() total charge from its hits
a constructor with so many arguments

... many other quantities
What is not inside a recob::Cluster?

its hits expect the same module to produce both clusters and
their associations to their recob::Hit s

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 39 / 46

http://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1Cluster.html

Testing

According to the maintainability prescription you need to:
write a unit test covering each explicit feature of your algorithm;
in this case, test on invalid clusters, 0-width clusters, ...

have an integration test ensuring your module plays well with the
rest of the art /LArSoft environment

But since we are in a hurry, tests are already in the School2015
branch:

unit test in ${MRB_SOURCE}/larexamples/test/producers:
should fit MyClusteringAlg interface from the “detailed” skeleton,
might need some trivial function name change with “bare” one
integration test configured in
${MRB_SOURCE}/larexamples/test/ci:
runs the FHiCL file SelectWideClusters.fcl on two events of
the input file

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 40 / 46

Exercise checklist (I)

� set up your own feature branch in larexamples

© merge the branch School2015 in: git rebase origin/School2015

� create a new algorithm class
(WideClustersAlg.h/WideClustersAlg.cpp)
(check the ones provided in skel/ directory)

� add/extend members that are required for it to perform its task:

© data holding the input and the output
© constructor, including configuration parser
© input method, reading the input list from the event
© run method, performing the selection
© output method, returning the list of selected clusters
© [optional] cleanup method, removing the unused data structures

� make sure the unit test has the correct names for the algorithm methods
(it’s at
larexamples/test/producers/WideClusterAlgTest.cpp)

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 41 / 46

Exercise checklist (II)

� create a new module (WideClusters_module.cc)
(check the ones provided in skel/ directory)

� check larexamples/producers/CMakeLists.txt

© art_make() includes all the needed libraries for the algorithm
© art_make() includes all the needed libraries for the module

� modify module’s constructor to

© declare it will produce a vector of clusters
© create and configure the algorithm

� modify module’s produce() method to:

© read the input from the event
© pass the input to the algorithm
© run the algorithm
© read the result from the algorithm
© write the result to the event

� compile the new module

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 42 / 46

Exercise checklist (III)

� run the unit test
(modify it if you changed WideClustersAlg interface)

� complete the FHiCL file with the parameters

� “install”, then run the integration test suite default_larsoft

� run the new module with the test input

� check that the results are as expected using as input tag:

© fuzzycluster
© linecluster (that produces clusters with width 0...)

� boast with your neighbours2

� think about how to add another collection for the rejected clusters

� think about how to port the associations to the new collection

2Solutions can be found in the subdirectories under solutions/.
G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 43 / 46

Let’s do it!

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 44 / 46

Cheat sheet
set up: see Saba’s slides first!

set up for development, MRB flavour:

source /products/larsoft_setup.sh
cd <work directory>
source localProducts_*/setup
mrbsetenv

set up for running your new code: as development setup, then:

mrbslp

use a specific branch:

cd "${MRB_SOURCE}/larexamples"
git checkout School2015

create a feature branch and update it to another branch:

cd "${MRB_SOURCE}/larexamples"
git flow feature start "${USER}_School2015"
git rebase origin/School2015

Disclaimer: I did not try any of these, watch up for typos!

Setup panic mode:

mrb zapBuild

then log out and back in, follow MRB development setup, and
recompile:

mrb build -j4

Can I speed up building? the following most often works fine
after you have built in the regular way once:

cd "$MRB_BUILDDIR"
make -j4

Run unit tests: follow development setup, compile, then

mrb test -j4

Run integration tests: follow run setup, then

setup lar_ci
test_runner default_larsoft

Where is LArSoft documentation?? see Erica’s slides; Doxygen
documentation is hosted in nusoft server as
http://nusoft.fnal.gov/larsoft/doxsvn/html

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 45 / 46

https://indico.fnal.gov/sessionDisplay.py?sessionId=11&confId=9928#20150807
https://indico.fnal.gov/sessionDisplay.py?sessionId=8&confId=9928#20150807
http://nusoft.fnal.gov/larsoft/doxsvn/html

Solutions

A set of solutions to the execise can be found in
${MRB_SOURCE}/larexamples/producers/solutions:
minimal/ a module producing a single list of wide clusters
rejected/ a module producing a two list of clusters, one with the

wide ones, one with the non-wide ones (“narrow”)
associations/ a module producing two lists of clusters and their

associations with hits

Why would WideClustersAlg::YieldSelectedClusters() return indices?
In the solutions, WideClustersAlg::YieldSelectedClusters() returns a vector with
indices of the selected clusters in the original input collection (std::vector<size_t>).
It could have returned copies of the selected clusters (std::vector<recob::Cluster>) or
even pointers to them (std::vector<recob::Cluster const*>).
This choice was done to make the creation of associations easier, since associations are based
on indices in data collections.
An even more efficient way would have been to return
std::vector<art::Ptr<recob::Cluster>> (or art::PtrVector<recob::Cluster>),
but that would require the algorithm to know about art structure, that violates our current
factorization prescription.

(this prerscription might be different in the future...)

G. Petrillo (University of Rochester) LArSoft algorithms and services art /LArSoft course, 2017-08-07 46 / 46

	Design principles
	The mortar: services
	LArSoft services

	The bricks: simulation, reconstruction, analysis algorithms
	LArSoft modules

	Introduction to The Exercise
	Appendix

