
LArSoft DB interface integration

Erica Snider
Fermilab

May 7, 2015

May 7, 2015 Database interface integration 2

Database interfaces*

 Two questions to discuss and agree on

– Where to put the abstraction layer and what should it look like?

– What data needs to have this treatment*, and what is the reconstruction-
level interface to it?

Having both answers should allow us complete the end-to-end code that
will work for all experiments

 Where to put the abstraction layer?

– Need one common interface for each set of data that can come from a DB.

● Naturally have one where LArSoft interfaces to the actual data values

* Talking in terms of “database interfaces”, but solution should
 support multiple data sources for each type of data: text files, fcl
 parameters, multiple databases, etc, all configurable via fcl

May 7, 2015 Database interface integration 3

From Brandon's DB interface Coord. Meeting talk on 4/21

The reconstruction sees
only DetPedestalRetrievalAlg,
PmtGainRetrievalAlg, etc.

These must therefore be
common interfaces.

Will refer to them generically
as “data provider”

Want only one class actually accessing the DB (or other sources) and
managing data, so also need an art::Service class with a common interface
between the DB and the data provider (DetPedestalRetrievalAlg in this case).

May 7, 2015 Database interface integration 4

Service design

 Placing the service at the data provider level allows the
weakest coupling to the code that retrieves and manages data
from the DB

– I.e, the service either contains or derives from the data provider

– This scheme gives the experiments the greatest fexibility

● Some trade-ofs in performance, so need to watch that

– Requires one new service for each data provider

 Design recommendations

– Separate the framework interface from the data provider if possible

– Service class should contain the class that implements the data provider

– Perform global IOV updates on per-event, per sub-run, or per run IOV basis

● Avoids checking the IOV on a per-channel basis for channel-oriented data

5

DataProviderInterface

virtual get/setValue(channel)
virtual Update(Timestamp)

DataProviderA

Implements:
virtual get/setValue(channel)
virtual Update(Timestamp)

Contains:
ParameterSet

For example:

In Brandon's example:
 DataProviderA = PedestalRetrievalAlg
 DataProviderInterface = new abstract interface
 for PedestalRetrievalAlg

DataProviderServiceInterface

virtual const DataProviderInterface & getDPI()

DataProvidersServiceA

Implements:
virtual const DataProviderInterface & getDPI()

preEvent(art::Event) / preSubRun / preRun as
appropriate, which calls
DataProviderA::Update(Timestamp)

Contains:
DataProviderA

6

DataProviderInterface

virtual get/setValue(channel)
virtual Update(Timestamp)

DataProviderA

Implements:
virtual get/setValue(channel)
virtual Update(Timestamp)

Contains:
ParameterSet

DataProviderServiceInterface

virtual const DataProviderInterface & getDPI()

DataProvidersServiceA

Implements:
virtual const DataProviderInterface & getDPI()

preEvent(art::Event) / preSubRun / preRun as
appropriate, which calls
DataProviderA::Update(Timestamp)

Contains:
DataProviderA

For example:

These classes are independent of art

These classes depend on
and talk to art

May 7, 2015 Database interface integration 7

What types of data do we need now

 The list:

– Wire channel pedestals and noise (done?)

– Wire channel gains

– PMT channel pedestals and noise

– PMT channel gains

– LAr properties (temperature, electron lifetime, etc)

– Space charge map (?)

– Alignment data (?)

– What else?

– …

 What are the interfaces to each in the reconstruction?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

