

The DUNE Experiment and its Sensitivity to CP Violation

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- New beam at Fermilab (1.2 MW@120 GeV protons, upgradeable to 2.4 MW), 1300 km baseline
- On-Axis 40 kton Liquid Argon Time Projection Chamber (LArTPC) Far Detector at Sanford Underground Research Facility, South Dakota, 1.5 km underground
- Highly-capable near detector at Fermilab
- v_e appearance and v_{μ} disappearance \rightarrow Measure MH, CPV and mixing angles
- Large detector, deep underground → Nucleon decay, supernova burst neutrinos, atmospheric neutrinos, etc (Juergen Reichenbacher (SDSMT)'s talk, Wed.)

DUNE Collaboration

Sanford Underground Research Facility, Lead, S. Dakota

- Home of Ray Davis's solar neutrino experiment
- 4 caverns for detector and one utility hall for DUNE
- Begin excavation for the first two caverns in FY2017
- Blast vibration study has been done

Far Detectors: Liquid Argon Time Projection Chamber (LArTPC)

- High resolution 3D track reconstruction
 - Charged particle tracks ionize argon atoms
 - Ionized electrons drift to anode wires (~ms) for XY-coordinate
 - Electron drift time projected for Z-coordinate
- Argon scintillation light (~ns) detected by photon detectors, providing t_0

Far Detector: Single-Phase LArTPC

- Anode wires immersed in LAr
- Anode and Cathode Plane Assemblies (APA, CPA) suspended from ceiling
- Drift distance: 3.6 m, wire pitch: 5 mm
- Induction wires +-37.7° to collection wires, wrapped around APA
- Photon detectors: light guides+SiPMs, embedded in APAs

Far Detector: Dual-Phase LArTPC

- Electrons extracted from LAr to a gaseous volume
- Signal amplified by LEM in the gas phase
- The charge is collected and recorded on a two-dimensional and segmented anode.
- Drift distance: 12 m (vertical)

Cathode

PMTs

Better Signal/Noise

Anode deck

Field shaping rings

Photon detectors: PMT below cathode

Near Detector

- Constrain systematic error for FD oscillation measurements
- High-precision cross-section/shortbaseline measurements
- Reference design in CDR fine grained tracker inspired by NOMAD
- Other designs being investigated
 - High-pressure Ar Gas TPC
 - LArTPC
 - Hybrid detector

Reference design in Concept Design Report (CDR)

ProtoDUNEs at the CERN Neutrino Platform

- Single-phase ProtoDUNE: Full-sized APA-CPA, full drift distances (3.6m)
- Dual-phase ProtoDUNEs: Full-sized
 readout planes, half of final drift distance
 (6m)
- CERN Neutrino Platform in construction
- Test-Beam operations in 2018: 0.4-12GeV, e,μ,π,K,p

DUNE Plan and Strategy

- 2017: Far Site construction begins
- 2018: Start to operate full-scale ProtoDUNE-SP/DP at CERN
- 2019: DUNE Technical Design Report (TDR) ready for funding agencies:
- 2020: Far Detector fabrication facilities ready
- 2021: Start to install FD module
- 2024: 20kt Far Detector operational, increasing to 40kt
- 2026: Deliver neutrino beam

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} (A-1)\Delta}{(A-1)^{2}} + 2\alpha \sin \theta_{13} \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin (A-1)\Delta}{(A-1)} \cos \Delta - 2\alpha \sin \theta_{13} \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin (A-1)\Delta}{(A-1)} \sin \Delta$$

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \qquad \Delta = \frac{\Delta m_{31}^2 L}{4E} \qquad A = +G_f N_e \frac{L}{\sqrt{2\Delta}}$$

- DUNE measures v_e appearance probability and v_{μ} disappearance probability with v_u and anti- v_u beam.
- Measuring mass hierarchy, δ_{CP} and octant of θ_{23} with v_e appearance

Neutrino Oscillation at DUNE

- Measure Mass Hierarchy, CP violation and mixing angles with neutrino and anti-neutrino beam
- 1300km baseline: large matter effect to solve MH
- Wide band beam covers 1st and 2nd oscillation maxima

Neutrino Oscillation at DUNE

- Measure Mass Hierarchy, CP violation and mixing angles with neutrino and anti-neutrino beam
- 1300km baseline: large matter effect to solve MH
- Wide band beam covers 1st and 2nd oscillation maxima

2016 Global Fit

From previous neutrino experiments:

- $\sin^2 2\theta_{12}$, $\sin^2 2\theta_{13}$ and $\sin^2 2\theta_{23}$ have been measured
- Δm_{21}^2 and $|\Delta m_{32}^2|$ have been measured
- Best fit for δ_{CP} close to $3\pi/2$ and can exclude some regions

Octant of θ_{23} is unclear, affects mass-hierarchy determination and δ_{CP} sensitivity

Mass Hierarchy Sensitivity

CP Sensitivity

MH & CPV Sensitivity vs. Time

300 kt-MW-yrs 40kt @ 1.07 MW, 80GeV protons Equal neutrino and anti-neutrino running

MH & CPV Resolution vs. Time

Summary

- DUNE Collaboration has been established as an international scientific priority
- DUNE/LBNF project: detailed plan for the 40 kt LArTPC FD and the 1.2 MW@120 GeV beam, ND design under development
- Far site construction and prototypes are underway this year
- Will make decisive measurements to CP violation, Mass Hierarchy and Octant of θ_{23}

Long Baseline Neutrino Facility (LBNF)

- 60-120 GeV protons from Fermilab Main Injector
- Wide energy spectrum covers the 1st and 2nd oscillation maxima
- Initial upward pitch, 101 mrad pitch to get to S. Dakota
- Near Detector Hall at edge of Fermilab site
- Initially 1.2 MW, upgradeable to 2.4 MW
- Reference design similar to NuMI, optimized to improve sensitivity to oscillation measurements

The LBNF/DUNE Project

- High-level recommendations
 - US "Snowmass" community study (2012-13) & Particle Physics Project Prioritization Panel (P5) Report (2014)
 - European Strategy for Particle Physics Update (2013)
- Neutrino Protocol signed between DOE and CERN
- Highest priority in Fermilab
- Follows the CERN LHC management model: Collaboration (DUNE) and Facility (LBNF) managed separately
 - LBNF(Long-Baseline Neutrino Facility): Neutrino beamline, Far/Near detector halls and facilities
 - DUNE(Deep Underground Neutrino Experiment): Far/Near detectors, Scientific program

CP Sensitivity vs. $sin^2\theta_{23}$

Equal neutrino and anti-neutrino running

Project Description

*Images updated every 30 minutes.

CERN Accelerating science

Welcome to EHN1-Neutrino Platform Facility

Multimedia

The 5th of September 2016 the new EHN1 extension dedicated to the Neutrino Platform & has been handed over from Civil Engineering (SMB) to the final users, in order to start the installation of the detectors and the related infrastructures.

Contact Us

Useful Links

Jianming Bian - UCI

Camera NP02 Camera NP04

CERN Neutrino Platform

2016/10/25 21:4

*Images updated every 30 minutes.

External structures of the cryostats in place!

Directory Sign in

24

CENF-Homepage

Blast Vibration Study, March 2016

- The excavation needs to remove hundreds of kt rock
- Conducted blast vibration study to understand the impacts on existing experiments
- Studied the blast energy moves through the rock and the air in existing spaces

Future Laboratories

Experiment Hall

Proposed third generation dark matter and/or 1 T neutrinoless double-beta decay

DUNE at LBNF

Proposed Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility 4850 Level—four 10kT liquid argon detectors

Ross Campus

- BHSU Underground Campus
 Low-Background Counting
- CASPAR Compact Accelerator System for Performing Astrophysical Research
- MAJORANA DEMONSTRATOR Electroforming laboratory

ProtoDUNE-SP

- Single-phase LArTPC prototype
- Full-sized APA-CPA
- Full drift distances (3.6m)
- Comparing 2 photon detector designs
- Plan for operation in 2018
- Test components, construction/installation/co mmissioning
- Use H4 beamline to test LAr response to charged particles

ProtoDUNE-DP

- Dual-phase LArTPC prototype
- Size: 6 m x 6m x 6m
- Full-sized readout planes, cathodes, and light collection
- Half of final drift distance (6m)
- Reuse elements and infrastructure from the 3x1x1 prototype
- Use H2 beamline

