Neutrino physics with the TEXONO Program at the KSNL and Dark Matter Search at CJPL presenter : Li Hau-Bin (Academia Sinica)

<u>TEXONO Taiwan</u> EXperiment On NeutrinO (since 1997)
 <u>Neutrino Physics at Kuo-Sheng Reactor Neutrino Laboratory (KSNL)</u>
 <u>CJPL</u> <u>CDEX China</u> Dark Matter Experiment (birth 2009)
 Dark Matter Searches at China Jin-Ping Underground Laboratory (CJPL)

- Overview :KSNL
- Neutrino programs at KSNL & Germanium detectors
- Dark Matter searches at KSNL & CJPL
- Summary

The 26th International Workshop on Weak Interactions and Neutrinos(WIN2017)18-24 June 2017 UC Irvine, Irvine, CA, USA

Kuo Sheng Reactor Neutrino Laboratory

Kuo-Sheng Nuclear Power Station : Reactor Building

- 2 reactor core, 2 GW.
- Lab. : 28 m from nearest core.
- 30mwe concrete over burden.

Flexible Design:

Allows different detectors conf. for different physics

Ge detector & sub-keV challenge

mass ~1kg : threshold ~few×100 eV : bgk ~few cpkkd

• Neutrino physics at sub-keV :

neutrino electro-magnetic properties, vN-coherent scattering

- Low-mass (~10 Gev) WIMP Search.
- Allow Low Threshold Measurements(~100eV)

• Near threshold :

energy spectrum : noise leakage. pulse : noise comparable to signal.

- Quenching Factors : not well measured
- Energy Calibration : non-linearity of energy definition.
- Trigger Efficiencies near threshold : noise survive hardware threshold.
- Physics vs. Noise : PSD, eff.
- Bulk vs. Surface : algorithms, bulk-efficiency and surface-leakage at low energy.
- Background understanding : contributions from background and cosmic-induced isotopes at low energy.

Special feature of PCGe : Bulk/Surface

Neutrino interaction with atoms

high energy : $\nu_e + e^- \rightarrow \nu_e + e^-$

when transfer energy < binding energy of e⁻, $\nu_e + A \rightarrow \nu_e + A^+ + e^-$: MCRRPA: Multi Configuration Relativistic Random Phase Approximation

- MCRRPA describes well Ge response function up to 80 eV
- Above 80eV Ge-crystal can treated as atom-like
- Below 80eV condense state should considered.
- Above 80 eV, error < 5 %

Sterile Neutrino Magnetic Moment

In Radiative Decay $\nu_a,\,\nu_s\to\nu_a{+}\gamma$

Under the assumption of sterile neutrino as cold dark matter, following parameters are adopted,

- Dark matter density = 0.4 GeVcm⁻³,
- Maxwellian velocity distribution with
- mean velocity = 220.0 km/s and V_{esc} = 533 km/s

 $\nu_{s} + \mathbf{A} \rightarrow \nu_{a} + \mathbf{A}^{+} + e^{-}$ $\nu_{a} \qquad \mathbf{A}^{+}$ $\gamma^{*} \qquad e^{-}$ $\nu_{s} \qquad \mathbf{A}^{+}$

q²>0 : forward scattering $\nu_s + A \rightarrow \nu_a + A^+ + e^-$, T>m_s/2 q²<0 : $\nu_a + A \rightarrow \nu_a + A^+ + e^-$, for all T

vN coherent scattering

- $v+A \rightarrow v+A$: Never been experimental observed.
- $\frac{d\sigma}{dT} = \frac{G_F^2}{m_N} \left[\left(1 4sin^2 \theta_W \right) N \right]^2 \left[1 \frac{m_N T_N}{2E^2} \right]$
- Neutral current process.
- $\sigma \propto N^2$ for $E_v < 50 MeV$ (Coherent)
- sensitive probe for BSM
- reactor monitoring
- important process in stellar collapse & supernova explosio
- for reactor neutrino on Ge, $T_{max} \sim 2 \text{ keV}$

T_{max} ~ 500 eV (Q. F. ~ 0.2)

vN coherent scattering

Partial coherency: when wavelength < nucleus-size

The cross-section ratio between nucleus and neutron & partial-coherency and full-coherency :

vN coherent scattering

estimated events rate at KSNL

6.6 count day⁻¹ kg⁻¹ at 100 eV threshold
0.59 count day⁻¹ kg⁻¹ at 200 eV threshold

improvements (plan) :

- <u>background</u>: cosmic correction, B/S correction, known sources, understanding (simulation).
- <u>phys/noise</u> : hardware improvement : cooling, electronic. PSD, noise-simulation.

Jinping Hydroelectric Power PlantsImage: Strain of the strain of the

CDEX & CJPL-I

tunnel entrance

Fiducial mass : 915 g, Analysis threshold ~ 475 eV

Q.F. adopted by TRIM software with 10% systematic uncertainty

Competitive results for DM axion below the axion mass of 1 keV.

next step : CDEX-10 Array detectors

- Test of cryogenic system has been done and shipped to CJPL in March 2016.
- A germanium array with LN in cryogenic system is commissioning.
- The performance of LAr is under study.

3 kg + 3 kg prototype: ready to take data, threshold < 250 eV

CDEX-1 : status & plans

Surface event

Physics results :

- DM results
- axion results
- DM annual modulation (plan)

Analysis :

- new B/S method
- dead layer measurement
- background understanding: experiment and simulation

Detector R&D :

- homemade Ge crystal
- detector fabrication
- low background electronics
- homemade electroformed Cu material (plan for underground)
- liquid-N for shielding and cooling

1⁺ electrode

CJPL-II : construction & Ge-1t (plan)

Four 14m*14m*130m Lab. Halls

1.8m

 DM search : Sensitive in the range of 10GeV, ~10⁻⁴⁴cm² (based on 100eV, 0.01cpkkd, 1 ton-yr)

<u>summary</u>

• sub-keV Ge R&D and ongoing plan :

Backgrond understanding.

Detector properties near noise edge.

Noise simulation.

B/S calibration schemes.

• Neutrino at KSNL:

Neutrino-atoms interaction : MCRRPA.

Results on neutrino electromagnetic properties.

goal : vN coherent scattering, ~100 eV threshold & ~ cpkkd.

• Dark Matter Searches at CJPL:

Competitive results on light WIMPs with sub-keV Ge.

CDEX-1 Axion results (competitive for DM-axion at sub-keV mass). 1-ton for $0\nu\beta\beta$ at CJPL-II ?

TEXONO Collaboration

TEXONO Taiwan EXperiment On NeutrinO (since 1997)

Neutrino Physics at Kuo-Sheng Reactor Neutrino Laboratory (KSNL)

- Taiwan (AS, INER, KSNPS)
- Turkey (METU, DEU)
- India (BHU)

Partner : CDEX Collaboration

<u>CDEX</u> China Dark Matter Experiment (birth 2009)

- Dark Matter Searches at China Jin-Ping Underground Laboratory (CJPL)
- China (<u>THU</u>, CIAE, NKU, SCU,YLJHD)
- Ge as primary detector.
- same detector technique, i. e. bulk/surface seperation phys/noise seperation.

Various Ge detectors

p-PCGe : ~kg, threshold ~300 eV with bulk/surface feature

n-PCGe : ~kg, threshold ~300 eV without bulk/surface feature

ULEGe : ~g, threshold ~100 eV

Challenge for sub-keV Ge

Neutrino magnetic moment

Data	Data Strength (kg-day)	$\begin{array}{c} {\rm Threshold} \\ {\rm (keV)} \end{array}$	$\mu_{\nu} 90\%$ CL Limits (< ×10 ⁻¹¹)	
			FEA	MCRRPA
TEXONO 1 kg Ge	570/127.8	12	< 7.4	< 7.4
GEMMA 1.5 kg Ge	755.6/187	2.8	< 2.9	< 2.9
TEXONO Point-Contact Ge	124.2/70.3	0.3	< 26.0	< 26.0
Point-Contact Ge Projected	800/200	0.1	< 1.5	< 1.7

CsI(TI) 200 kg : Probe Electroweak Physics [PRD10]

 $R = [1.08 \pm 0.21(stat) \pm 0.16(sys)] \times R_{SM}$

 $\sin^2 \theta_W = 0.251 \pm 0.031(stat) \pm 0.024(sys)$

<u>China Jin-Ping Underground</u> Laboratory (CJPL) CJPL 中国锦屏地下实验室 China Jinping Underground Laboratory

- 2400+ m rock overburden, drive-in road tunnel access
- 6x6x40 m cavern ready [THU & EHDC]
- Deepest Underground Lab.

Cosmic flux at CJPL

- 10⁶ Depth, meters of standard rock 1000 2000 3000 WIPP 10⁵ Soudan Kamioka Canfranc Boulb Muon intesity, m⁻² y 10⁴ Gran Sasso Modane **DUSEL 4850** 10³ Baksan CJPL 10^{2} Sudbury 2000 4000 6000 8000 Depth, meters water equivalent Ra-226 Th-232 K-40 (Unit : Bq/kg) (609keV) (911keV) **Rock Sample** < 1.1 1.8 ± 0.2 < 0.27 Ground Level ~600 ~25 ~50 (Beijing)
- 61.7 ± 11.7 /(m²·yr) [~8000/(m²·yr) at Gran S^asso,
 ~950 /(m²·yr) at Homestake]
 ref : *arXiv:1305.0899*
- Consistent with expectation : ¹⁰cm⁻²s⁻¹
 - ≈ 10⁻⁸ of ground level

Bulk/Surface separation : a better way

using bulk-ratio and surface ratio to solve the distribution :

Ge Crystal Growth Facilities at THU

Ge Detector Fabrication at THU

main considerations : cost and cosmic activation

CDEX-1t at CJPL-II

