# Puzzles in B Decays 

Alakabha Datta

## University of Mississippi

April 21, 2017

WIN 2017, Irvine

## Outline of Talk

- In recent times there have been some anomalies in $B$ decays that indicate lepton non-universal new physics.
- These are in semileptonic $b \rightarrow c \tau \overline{\nu_{\tau}}$ transitions: $R_{D^{(*)}}$ puzzle.
- These are in semileptonic $b \rightarrow s \ell^{+} \ell^{-}(I=\mu, e)$ transitions: $P_{5}^{\prime}$ and $R_{K}, R_{K^{(*)}}$ puzzles. BR of $b \rightarrow s \mu^{+} \mu^{-}$modes are lower.


## Outline of Talk

- Recently, LHCb announced LUV in measurement of $R_{K^{(*)}}$
- I will focus on simultaneous explanation of the $R_{D^{(*)}}$ and $R_{K}, R_{K^{(*)}}$ anomalies.
- Recent work shows how future measurements can distinguish among the models.
- Light new physics: GeV scale or $10-100 \mathrm{MeV}$ mediators.


## $R_{D^{(*)}}$ puzzle



$$
\begin{aligned}
& A_{S M}=\frac{G_{F}}{\sqrt{2}} V_{c b}\left[\left\langle D^{(*)}\left(p^{\prime}\right)\right| \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b|\bar{B}(p)\rangle\right] \bar{\tau} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{\tau} \\
& R(D) \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D^{+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{+} \ell^{-} \bar{\nu}_{\ell}\right)} \quad R\left(D^{*}\right) \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)} .
\end{aligned}
$$

## Experiments: $R_{D^{(*)}}$ puzzle

Recently, the BaBar, Belle and LHCb have reported the following measurements :

$$
\begin{align*}
R(D) & \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D^{+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{+} \ell^{-} \bar{\nu}_{\ell}\right)}=0.440 \pm 0.058 \pm 0.042 \\
R\left(D^{*}\right) & \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)}=0.332 \pm 0.024 \pm 0.018 \tag{1}
\end{align*}
$$

Belle

$$
\begin{align*}
R(D) & \equiv 0.375 \pm 0.064 \pm 0.026 \\
R\left(D^{*}\right) & \equiv 0.293 \pm 0.038 \pm 0.015,0.302 \pm 0.030 \pm 0.011 \tag{2}
\end{align*}
$$

LHCb

$$
\begin{align*}
& R\left(D^{*}\right) \equiv 0.336 \pm 0.027 \pm 0.030 \\
& R\left(D^{*}\right) \equiv 0.306 \pm 0.016 \pm 0.010 \tag{3}
\end{align*}
$$

Average HFAG

$$
\begin{align*}
R(D) & \equiv 0.397 \pm 0.040 \pm 0.028 \\
R\left(D^{*}\right) & \equiv 0.316 \pm 0.016 \pm 0.010 \tag{4}
\end{align*}
$$

Theory

$$
\begin{align*}
R(D) & \equiv 0.299 \pm 0.011(\text { FNAL } / \text { MILC }), 0.300 \pm 0.008(\text { HPQCD }) \\
& \equiv 0.299 \pm 0.003(a r X i v: 1703.05330) \\
R\left(D^{*}\right) & \equiv 0.257 \pm 0.003(\text { arXiv : 1703.05330) } \tag{5}
\end{align*}
$$

$R\left(D^{*}\right)$ is $3.3 \sigma$ from SM. $R(D)$ is $1.9 \sigma$ from SM. Combined with co-relations is $4 \sigma$ deviation.

## $\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}$

- In the ratios $R\left(D^{(*)}\right)$ the form factors effects (largely) cancel, $V_{c b}$ cancels and experimental systematic effects cancel.
- The SM has a flavor symmetry $S U(3)_{Q} \times S U(3)_{U} \times S U(3)_{D} \times S U(3)_{L} \times$ $S U(3)_{E}$ in the absence of Yukawa interactions.
- $W$ couples universally to all lepton generations.
- The results imply lepton non-universal interactions.


## Model independent NP analysis (See for example: Datta, Duraisamy, Ghosh)

- Effective Hamiltonian for $b \rightarrow$ l $^{-} \bar{\nu}_{l}$ with Non-SM couplings. The NP has to be LUV.

$$
\begin{aligned}
& \mathcal{H}_{e f f}=\frac{4 G_{F} V_{c b}}{\sqrt{2}}\left[\left(1+V_{L}\right)\left[\bar{c} \gamma_{\mu} P_{L} b\right]\left[\bar{I} \gamma^{\mu} P_{L} \nu_{l}\right]+V_{R}\left[\bar{c} \gamma^{\mu} P_{R} b\right]\left[\bar{I} \gamma_{\mu} P_{L} \nu_{l}\right]\right. \\
& \left.+S_{L}\left[\bar{c} P_{L} b\right]\left[\bar{I} P_{L} \nu_{l}\right]+S_{R}\left[\bar{c} P_{R} b\right]\left[\bar{I} P_{L} \nu_{l}\right]+T_{L}\left[\bar{c} \sigma^{\mu \nu} P_{L} b\right]\left[\bar{I} \sigma_{\mu \nu} P_{L} \nu_{l}\right]\right]
\end{aligned}
$$

The NP can be probed via distributions and other related decays.
$B \rightarrow D^{(*)} \tau \nu_{\tau}$ in SM + NP, Helicity Amplitudes
Decay Distribution described by Helicity Amplitudes

$$
\begin{aligned}
\mathcal{H}_{0}= & \frac{1}{2 m_{D^{*}} \sqrt{q^{2}}}\left[\left(m_{B}^{2}-m_{D^{*}}^{2}-q^{2}\right)\left(m_{B}+m_{D^{*}}\right) A_{1}\left(q^{2}\right)\right. \\
& \left.-\frac{4 m_{B}^{2}\left|p_{D^{*}}\right|^{2}}{m_{B}+m_{D^{*}}} A_{2}\left(q^{2}\right)\right]\left(1-g_{A}\right) \\
\mathcal{H}_{\|}= & \sqrt{2}\left(m_{B}+m_{D^{*}}\right) A_{1}\left(q^{2}\right)\left(1-g_{A}\right) \\
\mathcal{H}_{\perp}= & -\sqrt{2} \frac{2 m_{B} V\left(q^{2}\right)}{\left(m_{B}+m_{D^{*}}\right)}\left|p_{D^{*}}\right|\left(1+g_{V}\right) \\
\mathcal{H}_{t}= & \frac{2 m_{B}\left|p_{D^{*}}\right| A_{0}\left(q^{2}\right)}{\sqrt{q^{2}}}\left(1-g_{A}\right) \\
\mathcal{H}_{P}= & -\frac{2 m_{B}\left|p_{D^{*}}\right| A_{0}\left(q^{2}\right)}{\left(m_{b}(\mu)+m_{c}(\mu)\right)} g_{P}
\end{aligned}
$$

$B \rightarrow D^{(*)} \tau \nu_{\tau}$ in SM

The helicity amplitudes and consequently the NP couplings can be extracted from an angular distribution and compared with models.


Distribution includes CPV terms which are clean probes of NP without form factor issues. If we observe $\tau$ decay then we can measure $\tau$ polarization and CPV.

## Other Decays

- NP can be constrained from other decays have the same quark transition as $R_{D^{(*)}}: B_{c} \rightarrow \tau^{-} \bar{\nu}_{\tau}$ ( Alonso, Grinstein, Camalich), $B_{c} \rightarrow$ $J / \psi \tau^{-} \bar{\nu}_{\tau}, b \rightarrow \tau \nu X(\mathrm{LEP}), \Lambda_{b} \rightarrow \Lambda_{c} \tau \bar{\nu}_{\tau}$.
- Measurements in $\Lambda_{b} \rightarrow \Lambda_{c} \tau \bar{\nu}_{\tau}$ can further constrain the NP parameter space. (Datta:2017aue, Shivashankara:2015cta).

$$
\begin{aligned}
R\left(\Lambda_{c}\right) & =\frac{\mathcal{B}\left[\Lambda_{b} \rightarrow \Lambda_{c} \tau \bar{\nu}_{\tau}\right]}{\mathcal{B}\left[\Lambda_{b} \rightarrow \Lambda_{c} \ell \bar{\nu}_{\ell}\right]} \\
R_{\Lambda_{c}}^{\text {Ratio }} & =\frac{R\left(\Lambda_{c}\right)^{S M+N P}}{R\left(\Lambda_{c}\right)^{S M}}
\end{aligned}
$$

- $\Lambda_{b} \rightarrow \Lambda_{c}$ form factors are calculated from lattice QCD (Datta:2017aue, Detmold:2015aaa).


## $R_{\Lambda_{c}}^{\text {Ratio }}=1.3 \pm 3 \times 0.05$







Puzzles in B Decays


## Interesting Facts

$$
\begin{aligned}
R_{D}^{\text {Ratio }} & =\frac{R(D)_{e x p}}{R(D)_{S M}}=1.30 \pm 0.17 \\
R_{D^{*}}^{\text {Ratio }} & =\frac{R\left(D^{*}\right)_{\text {exp }}}{R\left(D^{*}\right)_{S M}}=1.25 \pm 0.08
\end{aligned}
$$

- If NP is just $V-A$ then

$$
R_{D}^{\text {ratio }} \equiv \frac{R_{D}^{\text {expt }}}{R_{D}^{S M}}=\left|1+V_{L}\right|^{2}=R_{D^{*}}^{\text {ratio }} \equiv \frac{R_{D^{*}}^{\text {expt }}}{R_{D^{*}}^{S M}}
$$

- In this case the distributions are just scaling of the SM distributions.


$$
\begin{aligned}
H_{\mathrm{eff}}(b \rightarrow s \ell \bar{\ell})= & -\frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[C_{9}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)\right. \\
& \left.\quad+C_{10}\left(\bar{s} L \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \gamma^{5} \ell\right)\right], \\
H_{\mathrm{eff}}(b \rightarrow s \nu \bar{\nu})= & -\frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b} V_{t s}^{*} C_{L}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right), \\
H_{\mathrm{eff}}\left(b \rightarrow s \gamma^{*}\right)= & C_{7} \frac{e}{16 \pi^{2}}\left[\bar{s}_{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) b\right] F^{\mu \nu}
\end{aligned}
$$

## Some Facts

- At the $m_{b}$ scale $C_{9} \sim-C_{10}=4.2$ while $C_{7} \sim 0.3$ and so semileptonic operators usually dominate. NP contribution from $C_{7}$ is not LUV.
- Low $q^{2}$ region is clean. Factorization results hold and Form Factors can satisfy certain symmetry relations(SCET).
- For very low $q^{2}$ the photon pole may dominates over the semileptonic operators.
- $b \rightarrow s \ell^{+} \ell^{-}$can come from charm resonance. $b \rightarrow s J / \psi(\rightarrow \ell \ell)$. So charm resonance region is cut out from measurement.
$P_{5}^{\prime}$ in $B_{d}^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$

$$
\begin{aligned}
& \frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{4}(\Gamma+\bar{\Gamma})}{\mathrm{d} \boldsymbol{q}^{2} \mathrm{~d} \vec{\Omega}} \\
& =\frac{9}{32 \pi}
\end{aligned} \quad \begin{aligned}
& \frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{k}+F_{\mathrm{L}} \cos ^{2} \theta_{k} \\
& \quad+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{k} \cos 2 \theta_{l} \\
& \quad \\
& \quad F_{\mathrm{L}} \cos ^{2} \theta_{k} \cos 2 \theta_{l}+S_{3} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \cos 2 \phi
\end{aligned}
$$

$$
+S_{4} \sin 2 \theta_{k} \sin 2 \theta_{l} \cos \phi+S_{5} \sin 2 \theta_{k} \sin \theta_{l} \cos \phi
$$

$$
+\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{k} \cos \theta_{l}+S_{7} \sin 2 \theta_{k} \sin \theta_{l} \sin \phi
$$

$$
\left.+S_{8} \sin 2 \theta_{k} \sin 2 \theta_{l} \sin \phi+S_{9} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \sin 2 \phi\right]
$$

Optimal observables. When $E_{K}$ is large, small $q^{2}$, in leading order in SCET these observables are free from form factors. Corrections are $\sim O\left(\frac{1}{E_{K}}\right)$.

$$
E_{K^{(*)}}=\frac{m_{B}^{2}+m_{K^{(*)}}^{2}-q^{2}}{2 m_{B}} \quad E_{K^{(*)}} \sim m_{B},
$$

when $q^{2}$ small.

$$
\begin{align*}
P_{1} & =\frac{2 S_{3}}{\left(1-F_{\mathrm{L}}\right)}=A_{\mathrm{T}}^{(2)}, \\
P_{2} & =\frac{2}{3} \frac{A_{\mathrm{FB}}}{\left(1-F_{\mathrm{L}}\right)}, \\
P_{3} & =\frac{-S_{9}}{\left(1-F_{\mathrm{L}}\right)},  \tag{7}\\
P_{4,5,8}^{\prime} & =\frac{S_{4,5,8}}{\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)}}, \\
P_{6}^{\prime} & =\frac{S_{7}}{\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)}} .
\end{align*}
$$



## NP Explanation

- Effective theory :Fits to NP semileptonic operators.
- Perform a model-independent analysis of $\bar{b} \rightarrow \bar{s} \ell^{+} \ell^{-}$, considering NP operators of the form $(\bar{s} \mathcal{O} b)\left(\bar{\ell} \mathcal{O}^{\prime} \ell\right)$, where $\mathcal{O}$ and $\mathcal{O}^{\prime}$ span all Lorentz structures ( Descotes-Genon, Matias, Virto, arXiv:1307.5683 ). NP in $\Delta C_{9 \mu}$
- Can come from $Z^{\prime}$ models or Leptoquark Models.
- Can be induced by four quark operators.


## Four quark operators, Datta, Duraisamy, Ghosh,

 1310.1937Some NP ( e.g. Top Color) through new particle exchange generates the following operators
$\mathcal{H}_{\mathrm{eff}}^{\mathrm{NP}} \sim \frac{\mathcal{A}_{1}}{\Lambda^{2}} \bar{b}^{\prime}\left(1+\gamma_{5}\right) b^{\prime} \bar{b}^{\prime}\left(1-\gamma_{5}\right) b^{\prime}+\frac{\mathcal{A}_{1}}{\Lambda^{2}} \bar{b}^{\prime}\left(1-\gamma_{5}\right) b^{\prime} \bar{b}^{\prime}\left(1+\gamma_{5}\right) b^{\prime}$,
Go from gauge to mass basis and

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\mathrm{NP}}= & -\frac{\mathcal{G}_{1}}{\Lambda^{2}}\left[\bar{s}\left(1-\gamma^{5}\right) b\right]\left[\bar{b}\left(1+\gamma^{5}\right) b\right] \\
& -\frac{\mathcal{G}_{2}}{\Lambda^{2}}\left[\bar{s}\left(1+\gamma^{5}\right) b\right]\left[\bar{b}\left(1-\gamma^{5}\right) b\right]+\text { h.c. }
\end{aligned}
$$



Figure:

where $F\left(q^{2}\right) \sim \frac{q^{2}}{\Lambda^{2}}$. The $q^{2}$ is cancelled by the photon propagator to give $\Delta C_{9}$.

- Since $A_{\mu}$ couples to electron and muons equally. This predicts same NP in electron and muon decays.
- To generate LUV we have to replace $A_{\mu}$ with a different boson which has LUV interactions.


## Hadronic Uncertainties: Charm Loop effects: eprint: 1006.4945



Even away from the resonance region there are diagrams with the soft-gluon are suppressed by $\frac{\Lambda_{Q C D}^{2}}{m_{c}^{2}}$ when $q^{2} \ll 4 m_{c}^{2}$. These are the

## $R_{K}$ puzzle

- $R_{K}$ : The LHCb Collaboration has found a hint of lepton non-universality. They measured the ratio $R_{K} \equiv \mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)$
in the dilepton invariant mass-squared range $1 \mathrm{GeV}^{2} \leq q^{2} \leq 6 \mathrm{GeV}^{2}$ and found

$$
R_{K}^{\text {expt }}=0.745_{-0.074}^{+0.090}(\text { stat }) \pm 0.036(\text { syst })
$$

This differs from the SM prediction of $R_{K}^{S M}=1 \pm O\left(10^{-2}\right)$ by $2.6 \sigma$, and is referred to as the $R_{K}$ puzzle.

- This measurement is theoretically clean. Several same models for the $P_{5}^{\prime}$ anomaly can also explain $R_{K}$.


## $R_{K^{(*)}}$ puzzle

- $R_{K^{(*)}}$ : Recently, LHCb Collaboration reported the measurement of the ratio
$R_{K^{*}} \equiv \mathcal{B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right) \quad$ in two different ranges of the dilepton invariant mass-squared $q^{2}$. The result was

$$
R_{K^{*}}^{\operatorname{expt}}=\left\{\begin{array}{l}
0.660_{-0.070}^{+0.110} \text { (stat) } \pm 0.024 \text { (syst) } \quad 0.045 \leq q^{2} \leq 1.1 \mathrm{GeV}^{2} \\
0.685_{-0.069}^{+0.113} \text { (stat) } \pm 0.047 \text { (syst) } \quad 1.1 \leq q^{2} \leq 6.0 \mathrm{GeV}^{2}
\end{array}\right.
$$

These differ from the SM prediction of $R_{K^{*}}^{\mathrm{SM}}$ by $2.2-2.4 \sigma$ (low $q^{2}$ ) or 2.4-2.5 $\sigma$ (medium $q^{2}$ ), and further strengthens the hint of lepton non-universality observed in $R_{K}$.

- Low $q^{2}$ dominated by photon pole which is not LUV. Hence measurement difficult to understand with heavy NP.
- Before $R_{K^{(*)}}$ there were several fits to NP for all the $b \rightarrow s \ell^{+} \ell^{-}$ observables (Descotes-Genon:2015uva, Alok:2017sui ...).
- Perform a model-independent analysis of $\bar{b} \rightarrow \bar{s} \ell^{+} \ell^{-}$, considering NP operators of the form $(\bar{s} \mathcal{O} b)\left(\bar{\ell} \mathcal{O}^{\prime} \ell\right)$, where $\mathcal{O}$ and $\mathcal{O}^{\prime}$ span all Lorentz structures.
- One of the preferred operator that can reproduce the experimental value of $R_{K}$ and other observation is of $(V-A) \times(V-A)$ form: $\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}\right)$. This corresponds to $\Delta C_{9}^{\mu}=-\Delta C_{10}^{\mu}$
- Remember in the $R_{D^{(*)}}$ puzzle also indicated LH NP interactions.
- This gives a hint to connect the two anomalies.


## $R_{K}$ and $R_{D^{(*)}}$

Assuming the scale of NP is much larger than the weak scale, the semileptonic operators should be made invariant under the full $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ gauge group (Alonso, Grinstein, Camalich). (Bhattacharya, Datta, London, Shivshankara) considered two possibilities for LH interactions:

$$
\begin{aligned}
\mathcal{O}_{1}^{N P} & =\frac{G_{1}}{\Lambda_{N P}^{2}}\left(\bar{Q}_{L}^{\prime} \gamma_{\mu} Q_{L}^{\prime}\right)\left(\bar{L}_{L}^{\prime} \gamma^{\mu} L_{L}^{\prime}\right) \\
\mathcal{O}_{2}^{N P} & =\frac{G_{2}}{\Lambda_{N P}^{2}}\left(\bar{Q}_{L}^{\prime} \gamma_{\mu} \sigma^{\prime} Q_{L}^{\prime}\right)\left(\bar{L}_{L}^{\prime} \gamma^{\mu} \sigma^{\prime} L_{L}^{\prime}\right) \\
& =\frac{G_{2}}{\Lambda_{N P}^{2}}\left[2\left(\bar{Q}_{L}^{\prime i} \gamma_{\mu} Q_{L}^{\prime j}\right)\left(\bar{L}_{L}^{\prime j} \gamma^{\mu} L_{L}^{\prime i}\right)-\left(\bar{Q}_{L}^{\prime} \gamma_{\mu} Q_{L}^{\prime}\right)\left(\bar{L}_{L}^{\prime} \gamma^{\mu} L_{L}^{\prime}\right)\right]
\end{aligned}
$$

Here $Q^{\prime} \equiv\left(t^{\prime}, b^{\prime}\right)^{T}$ and $L^{\prime} \equiv\left(\nu_{\tau}^{\prime}, \tau^{\prime}\right)^{T}$. The key point is that $\mathcal{O}_{2}^{N P}$ contains both neutral-current (NC) and charged-current (CC) interactions. The NC and CC pieces can be used to respectively explain the $R_{K}$ and $R_{D^{(*)}}$ puzzles.

## Models: Bhattacharya, Datta, Guevin, London, Watanabe

 Models: Vector Bosons and Leptoqaurks.Transform to the mass basis:

$$
u_{L}^{\prime}=U u_{L}, \quad d_{L}^{\prime}=D d_{L}, \quad \ell_{L}^{\prime}=L \ell_{L}, \quad \nu_{L}^{\prime}=L \nu_{L}
$$

The CKM matrix is given by $V_{C K M}=U^{\dagger} D$. The assumption is that the transformations $D$ and $L$ involve only the second and third generations:

$$
\begin{aligned}
D= & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{D} & \sin \theta_{D} \\
0 & -\sin \theta_{D} & \cos \theta_{D}
\end{array}\right) \\
L= & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{L} & \sin \theta_{L} \\
0 & -\sin \theta_{L} & \cos \theta_{L}
\end{array}\right) . \\
& V_{C K M} D^{\dagger}=U^{\dagger}
\end{aligned}
$$

## SM-like vector bosons

This model contains vector bosons ( $V B \mathrm{~s}$ ) that transform as $(\mathbf{1}, \mathbf{3}, 0)$ under $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$, as in the SM. The coupling is to only third generation. In the gauge basis, the Lagrangian describing the couplings of the $V B s$ to left-handed third-generation fermions is

$$
\begin{gathered}
\mathcal{L}_{V}=g_{q V}^{33}\left(\bar{Q}_{L 3}^{\prime} \gamma^{\mu} \sigma^{\prime} Q_{L 3}^{\prime}\right) V_{\mu}^{\prime}+g_{\ell V}^{33}\left(\bar{L}_{L 3}^{\prime} \gamma^{\mu} \sigma^{\prime} L_{L 3}^{\prime}\right) V_{\mu}^{\prime} \\
\mathcal{L}_{V}^{e f f}=-\frac{g_{q V}^{33} g_{\ell V}^{33}}{m_{V}^{2}}\left(\bar{Q}_{L 3}^{\prime} \gamma^{\mu} \sigma^{\prime} Q_{L 3}^{\prime}\right)\left(\bar{L}_{L 3}^{\prime} \gamma_{\mu} \sigma^{\prime} L_{L 3}^{\prime}\right) \\
g_{1}=0, \quad g_{2}=-g_{q V}^{33} g_{\ell V}^{33}
\end{gathered}
$$

The VB model also generates 4 quark and 4 lepton operators that contribute to $B_{s}$ mixing, $\tau \rightarrow \mu \mu \mu$ e.t.c. Variation of this model with more parameters.

## Models: allowed parameter space:

 $R_{K} \sim \sin \theta_{D} \cos \theta_{D} \sin ^{2} \theta_{L}$VB model: $g_{\mathrm{qV}}^{33}=g_{\mathrm{IV}}^{33}=\sqrt{0.5}$

$U_{1}$ model: $\left|h_{U_{1}}^{33}\right|^{2}=1$


## $\tau \rightarrow 3 \mu\left(Z^{\prime}\right.$ Model $)$

This decay is particularly interesting because only the VB model contributes to it. The present experimental bound is $\mathcal{B}\left(\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}\right)<2.1 \times 10^{-8}$ at $90 \%$ C.L. . Belle II expects to reduce this limit to $<10^{-10}$. The reach of LHCb is somewhat weaker, $<10^{-9}$. Now, the amplitude for $\tau \rightarrow 3 \mu$ depends only on $\theta_{L}$. The allowed value of $\theta_{L}$ corresponds to the present experimental bound. That is, VB predicts

$$
\mathcal{B}\left(\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}\right) \simeq 2.1 \times 10^{-8}
$$

Thus, the VB model predicts that $\tau \rightarrow 3 \mu$ should be observed at both LHCb and Belle II. This is a smoking-gun signal for the model.

## $\Upsilon$ Modes( Leptoquarks)

- $\Upsilon(3 S) \rightarrow \mu \tau$ :

$$
\begin{array}{rl}
V B & \mathcal{B}(\Upsilon(3 S) \rightarrow \mu \tau) \simeq 3.0 \times 10^{-9} \\
U_{1} & :\left.\quad \mathcal{B}(\Upsilon(3 S) \rightarrow \mu \tau)\right|_{\max }=8.0 \times 10^{-7}
\end{array}
$$

We made a rough estimate that Belle II should be able to measure $\mathcal{B}(\Upsilon(3 S) \rightarrow \mu \tau)$ down to $\sim 10^{-7}$. If this decay were seen, it would exclude $V B$ and point to $U_{1}$. This demonstrates the importance of this process for testing NP models in $B$ decays.

## Recent Fits after $R_{K^{(*)}}$

$$
R_{K^{*}}^{\text {expt }}=\left\{\begin{array}{l}
0.6600_{-0.070}^{+0.110} \text { (stat) } \pm 0.024 \text { (syst), }, \quad 0.045 \leq q^{2} \leq 1.1 \mathrm{GeV}^{2} \\
0.685_{-0.069}^{+0.113} \text { (stat) } \pm 0.047 \text { (syst), } \quad 1.1 \leq q^{2} \leq 6.0 \mathrm{GeV}^{2}
\end{array}\right.
$$

arXiv:1704.07397 : Alok et.al.

| Scenario | WC | pull |
| :---: | :---: | :---: |
| (I) $\Delta C_{9}^{\mu \mu}(\mathrm{NP})$ | $-1.25 \pm 0.19$ | 5.9 |
| (II) $\Delta C_{9}^{\mu \mu}(\mathrm{NP})=-\Delta C_{10}^{\mu \mu}(\mathrm{NP})$ | $-0.68 \pm 0.12$ | 5.9 |
| (III) $\Delta C_{9}^{\mu \mu}(\mathrm{NP})=-\Delta C_{9}^{\prime} \mu \mu$ | $(\mathrm{NP})$ | $-1.11 \pm 0.17$ |
| 5.6 |  |  |

Table: Model-independent scenarios: best-fit values of the WCs (taken to be real), as well as the pull $=\sqrt{\chi_{S M}^{2}-\chi_{\text {min }}^{2}}$ for fit (B) (CP-conserving $b \rightarrow s \mu^{+} \mu^{-}$ observables $+R_{K^{*}}$ and $R_{K}$ ). For each case there are 115 degrees of freedom.

## Motivating light $Z^{\prime}$



Question: Can we explain the $R_{K}$ and $R_{K^{(*)}}$ measurements in all bins with light mediators. I will focus on $M<200 \mathrm{MeV}$ mediators,

Light $Z^{\prime} R_{K}$ and $(g-2)_{\mu}$ ( Datta, Marfatia, Liao)
Relate $R_{K}$ to $(g-2)_{\mu}$ and neutrino NSI.
The most general form of the $b s Z^{\prime}$ vertex with vector type coupling is

$$
H_{b s Z^{\prime}}=F\left(q^{2}\right) \bar{s} \gamma^{\mu} P_{L} b Z_{\mu}^{\prime}
$$

where the form factor $F\left(q^{2}\right)$ can be constant or be a $q^{2}$ function (e.g. induced by four fermi operators).
In case $F\left(q^{2}\right) \neq 1$, it can be expanded as expanded as

$$
F\left(q^{2}\right)=a_{b s}+g_{b s} \frac{q^{2}}{m_{B}^{2}}+\ldots
$$

when momentum transfer $q^{2} \ll m_{B}^{2}$.
We assume $Z^{\prime}$ coupling to electrons is suppressed and $m_{Z^{\prime}}<2 m_{\mu}$ and we can consider two cases:

Case A: $Z^{\prime}$ couples to neutrinos.
Case B: $Z^{\prime}$ does not couple to neutrinos.
$b \rightarrow s \bar{\nu} \nu$
Case A: The process $b \rightarrow s \nu_{\alpha} \bar{\nu}_{\alpha}$ decays is dominated by the two body $b \rightarrow s Z^{\prime}$ decay with $\mathrm{BR}\left[Z^{\prime} \rightarrow \bar{\nu} \nu \sim 1\right]$.
There is a longitudinal polarization enhancement $\sim \frac{E_{Z^{\prime}}}{m_{Z^{\prime}}}$.
The coupling $b s Z^{\prime}$ is constrained by $B \rightarrow K \nu \bar{\nu}$ to be smaller than $10^{-9}$.
$R_{K} \Rightarrow Z^{\prime}$ coupling to muons to be $O(1)$ or larger which is in conflict with the $(g-2)_{\mu}$ measurement.
This constraint rules out $F\left(q^{2}\right)=1$ and forces $a_{b s} \sim 0$, so that

$$
H_{b s Z^{\prime}}=g_{b s} \frac{q^{2}}{m_{B}^{2}} \bar{s} \gamma^{\mu} P_{L} b Z_{\mu}^{\prime} \quad\left(H_{b s Z^{\prime}} \sim \bar{s} \gamma^{\mu} b \partial^{\nu} Z_{\mu \nu}^{\prime}\right),
$$

Case B: $Z^{\prime}$ does not couple to neutrinos and so $F\left(q^{2}\right)=1$ is allowed.

$$
H_{b s Z^{\prime}}=\bar{s} \gamma^{\mu} P_{L} b Z_{\mu}^{\prime},
$$

$b \rightarrow s \ell^{+} \ell^{-}$
Case A: The Hamiltonian for $b \rightarrow s \ell$ decays,

$$
H_{b s / l}=-\left[\frac{g^{*}}{q^{2}-m_{Z^{\prime}}^{2}}\right]\left[g_{b s} \frac{q^{2}}{m_{B}^{2}}\right] \bar{s} \gamma^{\mu} P_{L} b \bar{\ell} \gamma_{\mu} \ell
$$

Assume no NP with electrons. For $q^{2} \gg m_{Z^{\prime}}^{2}$ the $q^{2}$ dependence cancels and a good fit to all observables except $R_{K^{(*)}}$ in the low $q^{2}$ bin be explained.
Case B: The Hamiltonian for $b \rightarrow$ sll decays,

$$
H_{b s l l}=-\left[\frac{g^{*}}{q^{2}-m_{Z^{\prime}}^{2}}\right] \bar{s} \gamma^{\mu} P_{L} b \bar{\ell} \gamma_{\mu} \ell .
$$

Assume no NP with electrons. The $q^{2}$ dependence does not cancel and a good fit to all observables cannot be obtained even for $R_{K^{(*)}}$ in the low $q^{2}$ bin.

## Light Scalars and $Z^{\prime}$ coupling to electrons: Datta, Marfatia, Kumar, Liao

- Still need to explain low $q^{2}, R_{K^{(*)}}$ measurement.
- $S$ coupling to muons does not work: $R_{K}$ and $R_{K^{(*)}}$ increased from SM values.
- $Z^{\prime}$ couplings to muons do not work.
- We have to invoke NP coupling to electrons. $S\left(Z^{\prime}\right) \rightarrow e^{+} e^{-}$.
- We choose the mass of the new boson $\sim 25 \mathrm{MeV}$ to avoid branching ratio constraints. (All measurements have $m_{e e}$ above 30 MeV .)


## Electron couplings are constrained




Figure:

## fits

| Case |  |  | $R_{\text {K* }}$ [0.045-1.1] | $R_{K^{*}[1.1-6.0]}$ | $R_{K[1.0-6.0]}$ | pull |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Experimental results |  |  | $0.66 \pm 0.09$ | $0.69 \pm 0.10$ | $0.75 \pm 0.09$ |  |
| Standard model predictions |  |  | 0.93 | 0.99 | 1.0 |  |
| (i) Light scalar with electron coupling |  |  |  |  |  |  |
| $F\left(q^{2}\right) \equiv 1, g_{e e}^{S}=2.0 \times 10^{-4}$ | $g_{\text {bs }}^{S} g_{e e}^{S}=(12.6 \pm 2.2) \times 10^{-9}$ | $g_{b s}^{S^{\prime}} g_{\text {ee }}^{S}=(4.0 \pm 1.6) \times 10^{-9}$ | 0.70 | 0.91 | 0.69 | 4.3 |
| $a_{b s} \neq 0$ | $g_{b s}^{S} g_{e e}^{S}=(-1.3 \pm 2.1) \times 10^{-9}$ | $g_{b s}^{S^{\prime}} g_{\text {ee }}^{S}=(-13.1 \pm 2.1) \times 10^{-9}$ | 0.58 | 0.85 | 0.75 | 4.7 |
| $a_{b s}=0$ | $g_{\text {bs }}^{S} g_{e e}^{S}=(2.7 \pm 2.6) \times 10^{-8}$ | $g_{\text {bs }}^{S^{\prime}} g_{\text {ee }}^{S}=(-15.5 \pm 2.6) \times 10^{-8}$ | 0.89 | 0.65 | 0.75 | 4.4 |
| (iii) Light vector with electron coupling |  |  |  |  |  |  |
| $F\left(q^{2}\right) \equiv 1, g_{L}^{e e}=g_{R}^{e e}=2.5 \times 10^{-4}$ | $g_{\text {bs }} g_{e e}=(-0.6 \pm 1.0) \times 10^{-10}$ | $g_{b s}^{\prime} g_{\text {ee }}=(-0.4 \pm 1.1) \times 10^{-10}$ | 0.93 | 0.99 | 0.99 | 0.7 |
| $a_{b s} \neq 0, g_{L}^{e e}=g_{R}^{e e}$ | $g_{b s} g_{\text {ee }}=(-1.9 \pm 0.6) \times 10^{-9}$ | $g_{b s}^{\prime} g_{e e}=(-0.8 \pm 0.5) \times 10^{-9}$ | 0.62 | 0.92 | 0.74 | 4.5 |
| $a_{b s} \neq 0, g_{b s}^{\prime}=0, g_{L}^{e e} \neq g_{R}^{e e}$ | $g_{b s} g_{e e}=(-4.4 \pm 5.9) \times 10^{-10}$ | $g_{b s} g_{e e}^{\prime}=(7.5 \pm 3.3) \times 10^{-10}$ | 0.55 | 0.86 | 0.84 | 4.5 |
| $a_{b s} \neq 0, g_{b s}=0, g_{L}^{e e} \neq g_{R}^{e e}$ | $g_{b s}^{\prime} g_{e e}=(3.9 \pm 4.2) \times 10^{-10}$ | $g_{b s}^{\prime} g_{e e}^{\prime}=(12.4 \pm 2.6) \times 10^{-10}$ | 0.58 | 0.98 | 0.81 | 4.0 |
| $a_{b s}=0, g_{L}^{e e}=g_{R}^{e e}$ | $g_{\text {bs }} g_{\text {ee }}=(-3.9 \pm 1.0) \times 10^{-8}$ | $g_{b s}^{\prime} g_{e e}=(1.4 \pm 1.0) \times 10^{-8}$ | 0.78 | 0.60 | 0.75 | 4.8 |
| $a_{b s}=0, g_{b s}^{\prime}=0, g_{L}^{e e} \neq g_{R}^{e e}$ | $g_{b s} g_{\text {ee }}=(-3.2 \pm 2.3) \times 10^{-8}$ | $g_{b s} g_{e e}^{\prime}=(0.4 \pm 1.4) \times 10^{-8}$ | 0.83 | 0.70 | 0.67 | 4.6 |
| $a_{b s}=0, g_{b s}=0, g_{L}^{e e} \neq g_{R}^{e e}$ | $g_{b s}^{\prime} g_{e e}=(4.6 \pm 1.5) \times 10^{-8}$ | $g_{b s}^{\prime} g_{e e}^{\prime}=(2.0 \pm 0.3) \times 10^{-8}$ | 0.80 | 0.58 | 0.77 | 4.7 |

## Not all cases are consistent

Table: The experimental results for various $b \rightarrow s e^{+} e^{-}$observables, along with predictions for the SM and four new physics cases. The light mediator mass is $25 \mathrm{MeV}, F\left(q^{2}\right) \neq 1$ and $a_{b s}=0$.

|  | $R_{K[0.045-1.0]}$ | $\mathcal{B}\left(B \rightarrow K e^{+} e^{-}\right)_{[1.0-6.0]}$ | $\mathcal{B}\left(B \rightarrow X_{s} e^{+} e^{-}\right)_{[1.0-6.0]}$ | $B\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)_{\left[0.03^{2}-1\right]}$ |
| :--- | :---: | :---: | :---: | :---: |
| Experimental results | - | $(1.56 \pm 0.18) \times 10^{-7}$ | $(1.93 \pm 0.55) \times 10^{-6}$ | $(3.1 \pm 0.9) \times 10^{-7}$ |
| Standard model predictions | 0.98 | $1.69 \times 10^{-7}$ | $1.74 \times 10^{-6}$ | $2.6 \times 10^{-7}$ |
| Light scalar <br> $g_{b s}^{S} g_{e e}^{S}=2.7 \times 10^{-8}, g_{b s}^{S^{\prime}} g_{e e}^{S}=-15.5 \times 10^{-8}$ | 0.93 | $2.5 \times 10^{-7}$ | $2.3 \times 10^{-6}$ | $2.6 \times 10^{-7}$ |
| Light vector <br> $g_{b s} g_{e e}=-3.9 \times 10^{-8}, g_{b s}^{\prime} g_{e e}=1.4 \times 10^{-8}$ | 0.73 | $2.4 \times 10^{-7}$ | $2.6 \times 10^{-6}$ | $2.8 \times 10^{-7}$ |
| Light vector, $g_{b s}^{\prime}=0$ <br> $g_{b s} g_{e e}=-3.2 \times 10^{-8}, g_{b s} g_{e e}^{\prime}=0.4 \times 10^{-8}$ | 0.66 | $2.7 \times 10^{-7}$ | $2.5 \times 10^{-6}$ | $2.7 \times 10^{-7}$ |
| Light vector, $g_{b s}=0$ <br> $g_{b s}^{\prime} g_{e e}=4.6 \times 10^{-8}, g_{b s}^{\prime} g_{e e}^{\prime}=2.0 \times 10^{-8}$ | 1.04 | $2.4 \times 10^{-7}$ | $2.5 \times 10^{-6}$ | $2.8 \times 10^{-7}$ |

$R_{K}$ measurement in low $q^{2}$ bin can help probe various low mass mediator models.

## Conclusions

- Several anomalies in $B$ decays indicating lepton non-universal interactions.
- These anomalies may arise from the same New Physics.
- Anomalies indicate LUV. In general we should also observe LFV processes.
- Interesting modes are $\tau \rightarrow 3 \mu$ and $\Upsilon(3 S) \rightarrow \mu \tau$. Observation of these modes can point to specific models of new physics.
- Light NP is highly constrained but some scenarios are viable.

