Please read these instructions before posting any event on Fermilab Indico

Indico will be unavailable on Wed, Jan 15th from 7-7:30am CST due to server maintenance.

18–24 Jun 2017
UC Irvine, Irvine, CA, USA
US/Pacific timezone

Neutrino CP Violation with the ESSnuSB project

20 Jun 2017, 15:30
20m
Pacific Ballroom C (UC Irvine, Irvine, CA, USA)

Pacific Ballroom C

UC Irvine, Irvine, CA, USA

Working Group Sessions Neutrino Physics Working Group Working Group: Neutrino Physics

Speaker

Dr Marcos Dracos (IPHC-IN2P3/CNRS)

Description

After measuring in 2012 a relatively large value of the neutrino mixing angle θ13, the door is now open to observe for the first time a possible CP violation in the leptonic sector. The measured value of θ13 also privileges the 2nd oscillation maximum for the discovery of CP violation instead of the usually used 1st oscillation maximum. The sensitivity at this 2nd oscillation maximum is about three times higher than for the 1st oscillation maximum inducing a lower influence of systematic errors. Going to the 2nd oscillation maximum necessitates a very intense neutrino beam with the appropriate energy. The world’s most intense pulsed spallation neutron source, the European Spallation Source, will have a proton linac with 5 MW power and 2 GeV energy. This linac, under construction, also has the potential to become the proton driver of the world’s most intense neutrino beam with very high potential to discover a neutrino CP violation. The physics performance of that neutrino Super Beam in conjunction with a megaton underground Water Cherenkov neutrino detector installed at a distance of about 500 km from ESS has been evaluated. In addition, the choice of such detector will extent the physics program to proton–decay, atmospheric neutrinos and astrophysics searches. The ESS proton linac upgrades, the accumulator ring needed for proton pulse compression, the target station optimization and the physics potential are described. In addition to neutrinos, this facility will also produce at the same time a copious number of muons which could be used by a low energy nuSTORM facility, a future neutrino factory or a muon collider. The ESS neutron facility will be fully ready by 2023 at which moment the upgrades for the neutrino facility could start. This project is now supported by the COST Action CA15139 "Combining forces for a novel European facility for neutrino-antineutrino symmetry-violation discovery" (EuroNuNet).

Primary author

Dr Marcos Dracos (IPHC-IN2P3/CNRS)

Presentation materials