Charged Higgs production in association with a W or a top

Nikolaos Kidonakis

- Charged Higgs production
- Higher-order corrections
- tH^- production
- H^-W^+ production

Department of Physics

WIN2017

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Charged Higgs production

A charged Higgs would be sure sign of new physics

2-Higgs doublet models

LHC has good potential for discovery

I will discuss two production processes $bg \to tH^-$ and $b\bar{b} \to H^-W^+$

Probe into electroweak and Higgs physics

Higher-order corrections are significant

very massive final states

Soft-gluon corrections are important

Top is the heaviest known elementary particle Decays before hadronization Born cross section for $bg \rightarrow tH^- \propto \alpha \alpha_s (m_b^2 \tan^2 \beta + m_t^2 \cot^2 \beta)$ $\tan \beta = v_2/v_1$ ratio of vevs of two Higgs doublets

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Higher-order corrections

 $b(p_b) + g(p_g) \longrightarrow t(p_t) + H^-(p_H)$ **Define** $s = (p_b + p_g)^2$, $t = (p_b - p_t)^2$, $u = (p_g - p_t)^2$ and $s_4 = s + t + u - m_t^2 - m_H^2$

At partonic threshold $s_4 \rightarrow 0$

Soft corrections $\left[\frac{\ln^k(s_4/m_H^2)}{s_4}\right]_+$

For the order α_s^n corrections $k \leq 2n-1$

Resum these soft corrections for the double-differential cross section

At NNLL accuracy we need two-loop soft anomalous dimensions

Derive approximate cross sections at NNLO

Soft-gluon Resummation

moments of the partonic cross section with moment variable N: $\hat{\sigma}(N) = \int (ds_4/s) \ e^{-Ns_4/s} \hat{\sigma}(s_4)$

factorized expression for the cross section in $4 - \epsilon$ dimensions

$$\hat{\sigma}^{bg \to tH^{-}}(N,\epsilon) = \left(\prod_{i=b,g} J_{i}\left(N,\mu,\epsilon\right)\right) H^{bg \to tH^{-}}\left(\alpha_{s}(\mu)\right) S^{bg \to tH^{-}}\left(\frac{m_{H}}{N\mu},\alpha_{s}(\mu)\right)$$

 $H^{bg \rightarrow tH^-}$ is hard function and $S^{bg \rightarrow tH^-}$ is soft function

Soft function S satisfies the renormalization group equation

$$\left(\mu\frac{\partial}{\partial\mu} + \beta(g_s,\epsilon)\frac{\partial}{\partial g_s}\right)S^{bg\to tH^-} = -2S^{bg\to tH^-}\Gamma_S^{bg\to tH^-}$$

Soft anomalous dimension $\Gamma_S^{bg \to tH^-}$ controls the evolution of $S^{bg \to tH^-}$ which results in the exponentiation of logarithms of N

$$\Gamma_{S}^{bg \to tH^{-}} = (\alpha_{s}/\pi)\Gamma_{S}^{(1)} + (\alpha_{s}/\pi)^{2}\Gamma_{S}^{(2)} + \cdots, \text{ with}$$

$$\Gamma_{S}^{(1)} = C_{F} \left[\ln\left(\frac{m_{t}^{2}-t}{m_{t}\sqrt{s}}\right) - \frac{1}{2} \right] + \frac{C_{A}}{2} \ln\left(\frac{m_{t}^{2}-u}{m_{t}^{2}-t}\right)$$

$$\Gamma_{S}^{(2)} = \left[C_{A} \left(\frac{67}{36} - \frac{\zeta_{2}}{2}\right) - \frac{5}{18}n_{f} \right] \Gamma_{S}^{(1)} + C_{F}C_{A} \frac{(1-\zeta_{3})}{4}$$

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Resummed cross section

$$\hat{\sigma}_{\text{resummed}}^{bg \to tH^{-}}(N) = \exp\left[\sum_{i=b,g} E_{i}(N_{i})\right] H^{bg \to tH^{-}}\left(\alpha_{s}(\sqrt{s})\right) \\ \times S^{bg \to tH^{-}}\left(\alpha_{s}\left(\frac{\sqrt{s}}{N'}\right)\right) \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/N'} \frac{d\mu}{\mu} 2\Gamma_{S}^{bg \to tH^{-}}(\alpha_{s}(\mu))\right]$$

The aNNLO soft-gluon corrections are:

$$\frac{d^2 \hat{\sigma}_{aNNLO}^{(2) bg \to tH^-}}{dt \, du} = F_{LO}^{bg \to tH^-} \frac{\alpha_s^2}{\pi^2} \sum_{k=0}^3 C_k^{(2)} \left[\frac{\ln^k (s_4/m_H^2)}{s_4} \right]_+$$

with coefficients $C_3^{(2)} = 2(C_F + C_A)^2$

$$C_{2}^{(2)} = (C_{F} + C_{A}) \left\{ 3C_{F} \left[2\ln\left(\frac{m_{t}^{2} - t}{m_{t}\sqrt{s}}\right) - 2\ln\left(\frac{m_{H}^{2} - u}{m_{H}^{2}}\right) - 1 \right] - 3C_{A} \left[\ln\left(\frac{m_{t}^{2} - t}{m_{t}^{2} - u}\right) + 2\ln\left(\frac{m_{H}^{2} - t}{m_{H}^{2}}\right) \right] - 3(C_{F} + C_{A})\ln\left(\frac{\mu_{F}^{2}}{s}\right) - \frac{\beta_{0}}{2} \right\}$$

The expressions for $C_1^{(2)}$ and $C_0^{(2)}$ are much longer

Total cross sections

N. Kidonakis, WIN2017, Irvine, CA, June 2017

K-factors

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Top p_T distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Normalized top p_T distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

K-factors for top p_T distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Top rapidity distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Normalized top rapidity distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

K-factors for top rapidity distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

$$b(p_1) + \bar{b}(p_2) \to H^-(p_3) + W^+(p_4)$$

Define $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$, $u = (p_2 - p_3)^2$
and $s_4 = s + t + u - m_H^2 - m_W^2$

At partonic threshold $s_4 \rightarrow 0$

Soft corrections $\left[\frac{\ln^k(s_4/m_H^2)}{s_4}\right]_+$

factorized expression for the cross section in $4 - \epsilon$ dimensions

$$\hat{\sigma}^{b\bar{b}\to H^-W^+}(N,\epsilon) = \left(\prod_{i=b,\bar{b}} J_i(N,\mu,\epsilon)\right) H^{b\bar{b}\to H^-W^+}(\alpha_s(\mu)) \ S^{b\bar{b}\to H^-W^+}\left(\frac{m_H}{N\mu},\alpha_s(\mu)\right)$$
Resummed cross section
$$\hat{\sigma}^{b\bar{b}\to H^-W^+}_{\text{res}}(N) = \exp\left[\sum_{i=b,\bar{b}} E_i(N_i)\right] H^{b\bar{b}\to H^-W^+}\left(\alpha_s(\sqrt{s})\right) \ S^{b\bar{b}\to H^-W^+}\left(\alpha_s(\sqrt{s}/\tilde{N}')\right)$$

$$\times \exp\left[2\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}'} \frac{d\mu}{\mu} \Gamma_S^{b\bar{b}\to H^-W^+}(\alpha_s(\mu))\right]$$

The NNLO collinear and soft-gluon corrections are

$$\frac{d^2 \hat{\sigma}_{aNNLO}^{(2) b\bar{b} \to H^- W^+}}{dt \, du} = F_{LO}^{b\bar{b} \to H^- W^+} \frac{\alpha_s^2}{\pi^2} \left\{ -C_3^{(2)} \frac{1}{m_H^2} \ln^3 \left(\frac{s_4}{m_H^2} \right) + \sum_{k=0}^3 C_k^{(2)} \left[\frac{\ln^k (s_4/m_H^2)}{s_4} \right]_+ \right\}$$

with $C_3^{(2)} = 8C_F^2$
 $C_2^{(2)} = -12C_F^2 \left(\ln \left(\frac{(t-m_W^2)(u-m_W^2)}{m_H^4} \right) + \ln \left(\frac{\mu_F^2}{s} \right) \right) - \frac{11}{3}C_F C_A + \frac{2}{3}C_F n_f$

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Total cross sections

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Charged Higgs p_T distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Normalized charged Higgs p_T distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Charged Higgs rapidity distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Normalized charged Higgs rapidity distributions

N. Kidonakis, WIN2017, Irvine, CA, June 2017

Summary

- many new results in charged Higgs production
- total cross sections for tH^- production
- top-quark p_T and rapidity distributions in tH^- production
- total cross sections for H^-W^+ production
- charged-Higgs p_T and rapidity distributions in H^-W^+ production
- higher-order corrections are very significant