Exact Neutrino Mixing Angles from Three Subgroups of SU(2) and the Physics Consequences

Franklin Potter

Formerly: UC Irvine Physical Sciences

WIN 2017 UC Irvine, June 19 - 24

Goal

- Show that the 3 lepton families represent 3 special and related subgroups of SU(2), therefore remaining within the realm of the SM EW gauge group.
- Show that the 2 lepton (and quark) flavor states in each family may not be 'pure' SU(2) basis states
- Mixing makes them behave collectively as SU(2)

$SU(2) \approx$ unit quaternions

- q = a + bi + cj + dk
- $a^2 + b^2 + c^2 + d^2 = 1$
- a, b, c, d ε **R**
- quaternion rot θ in \mathbb{R}^3 is actually rot by $\theta/2$
- e.g. k is a quaternion rot by π in i-j plane

Discrete symmetry subgroups

- The only finite quaternion subgroups are:
- 2T, 2O, 2I, 2D_{2n}, 2C_n, 1C_n (n odd)
- 2 means binary or double cover [of SO(3)]
- Only 2T, 2O, 2I need include 3-D volume

Assign 2T, 2O, 2I

- 2T \Rightarrow Electron family (v_e, e⁻)
- 20 rightarrow Muon family (v_µ, µ⁻)
- 2I ⇒ Tau family (ν_τ, τ⁻)

Quaternion generators

• Difference in k only

- SU(2): $U_1 = j$ $U_2 = k$ $U_3 = i$
- 2T: $U_1 = j$ $U_2 = ?$ $U_3 = i$
- 20: $U_1 = j$ $U_2 = ?$ $U_3 = i$
- 21: $U_1 = j$ $U_2 = ?$ $U_3 = i$

What is U_2 ?

- $U_2 = -i \cos \pi/q j \cos \pi/p k \sin \pi/h$
- Alternate names [p,q,2] ⇒
- 2T = [3,3,2]; 2O = [4,3,2]; 2I = [5,3,2]
- h = 4, 6, 10

Want contribution of the $3 U_2$'s = k by linear superposition

Family	Group	U ₂	Factor	Angle	Angle/2
V _e , e⁻	[3,3,2]	- 1/2 i - 1/2 j + 1/√2 k	-0.26422	105.3204°	52.660°
V _μ , μ⁻	[4,3,2]	- 1/2 i - 1/√2 j + 1/2 k	0.80116	36.7581°	18.379°
ν _τ , τ-	[5,3,2]	- 1/2 i - φ/2 j + φ ⁻¹ /2 k	-0.53695	122.4764°	61.238°

3 equations for 3 unknowns \rightarrow normalized Factors $\Phi = (1 + \sqrt{5})/2 = 1.618...$ i.e. Golden Ratio Angle = arccosine (Factor), the projection angle to the k axis

Neutrino mixing angles

- $\theta_1 = 52.660^\circ$ $\theta_2 = 18.379^\circ$ $\theta_3 = 61.238^\circ$
- $\theta_{12} = 34.281^{\circ}$ vs. $33.56^{\circ} \pm 0.77^{\circ}$
- $\theta_{23} = 42.859^{\circ}$ vs. $41.6^{\circ} \pm 1.5^{\circ}$
- $\theta_{13} = -8.578^{\circ}$ vs. $8.46^{\circ} \pm 0.15^{\circ}$
- Assumed no charged-lepton mixing
- $\theta_{23} \Rightarrow$ normal mass ordering $m_1 < m_2 < m_3$
- NuFit 3.0 (2016)
- As expected: $34.281^{\circ} = 42.859^{\circ} 8.578^{\circ}$

Major consequences:

- Neutrino mixing occurs because 3 lepton families together act as one SU(2)
- Leptons are 3-D objects representing discrete symmetry properties of subgroups 2T, 2O, 2I
- Total lepton number is conserved, but not each lepton family number separately
- Unitary PMNS matrix: rows/columns $\rightarrow 1$

PMNS matrix

0.8170 (0.822)	0.5570 (0.547)	- 0.1491 e ^{-iδ} - (- 0.150 + 0.038i) -
- 0.4129 + 0838 e ^{iδ}	0.6057 +0.0571 e ^{-iδ}	0.6726
- (- 0.356 + 0.020i)	(0.704 - 0.013i)	(0.614)
0 3831 + 0.0903 e ^{-iδ}	- 0.5620 + 0.0616 e ^{-iδ}	0.7248
(0.442 + 0.025i)	- (- 0.452 + 0.017i)	(0.774)

PMNS matrix

0.8170 (0.822)	0.5570 (0.547)	- - 0.1491 e ^{-iδ} - (- 0.150 + 0.038i) -
- 0.4129 + 0838 e ^{iδ}	0.6057 +0.0571 e ^{-iδ}	0.6726
- (- 0.356 + 0.020i)	(0.704 - 0.013i)	(0.614)
0 3831 + 0.0903 e ^{-iδ}	- 0.5620 + 0.0616 e ^{-iδ}	0.7248
(0.442 + 0.025i)	- (- 0.452 + 0.017i)	(0.774)

More consequences?

- Phase δ could be 0, $-\pi/2$, $\pi/2$??
- No more lepton families beyond 3
- For two EW basis states in R³, only 4 d.o.f.
 → one massive lepton (3 d.o.f.) and one massless lepton (1 d.o.f.)
- For v to have mass, must "see" 4th dim, where there are 6 d.o.f. \rightarrow 2 massive

One more great clue?!

- Syzygies from invariant theory, 3 invariant eqs for each group 2T, 2O, 2I
 1884 Felix Klein
- Each group related to j-invariant of elliptic modular functions and linear transformations
- Group constants 1, 108, 1728
- Charged leptons: 0.511, 105.66, 1776.82 MeV
- % differences: -48.9%, -2.17%, +2.83%
- Coincidence, Correlation, or Cause and effect?

Anecdote?

- Richard Feynman, in his Caltech office Nov 1987
- The Icosahedron and the solution of equations of the fifth degree (1884) by F. <u>Klein</u> [see Dover edition 1956]

Quarks?

- Same approach works for quark families
- 4 subgroups in $R^4 \rightarrow 4$ quark families predicted
- [3,3,3], [4,3,3], [3,4,3], [5,3,3]
- \rightarrow 4x4 CKM4 matrix \rightarrow good agreement to CKM 3x3 except for V_{ub}
- 3 lepton families acting as one SU(2) match 4 quark families acting as one SU(2) to cancel triangle anomaly

Possible consequences

- Predicts EW $\theta_W = 30^\circ$ agrees with latest expts
- No sterile neutrino
- Not Majorana neutrinos
- No neutrinoless double beta decay
- 2 more quarks to be discovered

Thank You!

- 2T = [3,3,2] \Rightarrow (v_e, e^-) $\theta_1 = 52.660^\circ$
- 20 = [4,3,2] \Rightarrow (v_{μ}, μ^{-}) $\theta_{2} = 18.379^{\circ}$
- 21 = [5,3,2] \Rightarrow (v_{τ}, τ^{-}) $\theta_{3} = 61.238^{\circ}$
- $34.281^{\circ} = 42.859^{\circ} 8.578^{\circ}$
- Neutrino mixing occurs because 2T, 2O, 2I act together to make SU(2) for the SM
- See my DISCRETE 2014 Conference writeup in Journal of Physics: Conference Series, Vol 631 (<u>link</u>)