Exact Neutrino Mixing Angles from Three Subgroups of SU(2)

and the Physics Consequences

Franklin Potter

Formerly: UC Irvine Physical Sciences

WIN 2017 UC Irvine, June 19-24

Goal

- Show that the 3 lepton families represent 3 special and related subgroups of $\mathrm{SU}(2)$, therefore remaining within the realm of the SM EW gauge group.
- Show that the 2 lepton (and quark) flavor states in each family may not be 'pure' SU(2) basis states
- Mixing makes them behave collectively as SU(2)

$\mathrm{SU}(2) \approx$ unit quaternions

- $\mathrm{q}=\mathrm{a}+\mathrm{bi}+\mathrm{cj}+\mathrm{dk}$
- $a^{2}+b^{2}+c^{2}+d^{2}=1$
- $a, b, c, d \quad \varepsilon \mathbb{R}$
- quaternion rot θ in \mathbb{R}^{3} is actually rot by $\theta / 2$
- e.g. k is a quaternion rot by π in i-j plane

Discrete symmetry subgroups

- The only finite quaternion subgroups are:
- 2T, 2O, 2I, 2D2n, 2Cn, 1Cn (n odd)
- 2 means binary or double cover [of SO(3)]
- Only 2T, 20, 21 need include 3-D volume

Assign 2T, 20, 21

- $2 \mathrm{~T} \Rightarrow$ Electron family $\left(\mathrm{V}_{\mathrm{e}}, \mathrm{e}^{-}\right)$
- $2 \mathrm{O} \Rightarrow$ Muon family $\left(\mathrm{V}_{\mu}, \mu^{-}\right)$
- $2 \mathrm{ll} \Rightarrow$ Tau family $\left(\mathrm{V}_{\mathrm{T}}, \mathrm{T}^{-}\right)$

Quaternion generators

- Difference in k only
- $S U(2): U_{1}=j \quad U_{2}=k \quad U_{3}=i$
- 2T: $\mathrm{U}_{1}=\mathrm{j} \quad \mathrm{U}_{2}=? \quad \mathrm{U}_{3}=\mathrm{i}$
- 20: $\mathrm{U}_{1}=\mathrm{j} \quad \mathrm{U}_{2}=? \quad \mathrm{U}_{3}=\mathrm{i}$
- 2l: $\mathrm{U}_{1}=\mathrm{j} \quad \mathrm{U}_{2}=? \quad \mathrm{U}_{3}=\mathrm{i}$

What is U_{2} ?

- $\mathrm{U}_{2}=-\mathrm{i} \cos \pi / q-j \cos \pi / p-k \sin \pi / h$
- Alternate names [p,q,2] \Rightarrow
- $2 \mathrm{~T}=[3,3,2] ; \quad 2 \mathrm{O}=[4,3,2] ; \quad 2 \mathrm{I}=[5,3,2]$
- $h=4,6,10$

Want contribution of the $\mathbf{3} \mathbf{U}_{\mathbf{2}}$'s $=\mathbf{k}$ by linear superposition

Family	Group	U_{2}	Factor	Angle	Angle/2
$V_{e}, e^{-}[3,3,2]$	$-1 / 2 i-1 / 2 j+1 / \sqrt{ } 2 k$	-0.26422	105.3204°	52.660°	
$V_{\mu}, \mu^{-}[4,3,2]$	$-1 / 2 i-1 / \sqrt{ } 2 j+1 / 2 k$	0.80116	36.7581°	18.379°	
V_{T}, T^{-}	$[5,3,2]$	$-1 / 2 i-\phi / 2 j+\phi^{-1} / 2 k$	-0.53695	122.4764°	61.238°

3 equations for 3 unknowns \rightarrow normalized Factors
$\Phi=(1+\sqrt{5}) / 2=1.618$... i.e. Golden Ratio
Angle $=$ arccosine (Factor), the projection angle to the k axis

Neutrino mixing angles

- $\theta_{1}=52.660^{\circ} \quad \theta_{2}=18.379^{\circ} \quad \theta_{3}=61.238^{\circ}$
- $\theta_{12}=34.281^{\circ} \quad$ vs. $33.56^{\circ} \pm 0.77^{\circ}$
- $\theta_{23}=42.859^{\circ} \quad$ vs. $41.6^{\circ} \pm 1.5^{\circ}$
- $\theta_{13}=-8.578^{\circ}$ vs. $8.46^{\circ} \pm 0.15^{\circ}$
- Assumed no charged-lepton mixing
- $\theta_{23} \Rightarrow$ normal mass ordering $m_{1}<m_{2}<m_{3}$
- NuFit 3.0 (2016)
- As expected: $34.281^{\circ}=42.859^{\circ}-8.578^{\circ}$

Major consequences:

- Neutrino mixing occurs because 3 lepton families together act as one SU(2)
- Leptons are 3-D objects representing discrete symmetry properties of subgroups 2T, 2O, 21
- Total lepton number is conserved, but not each lepton family number separately
- Unitary PMNS matrix: rows/columns $\rightarrow 1$

PMNS matrix

$\begin{aligned} & 0.8170 \\ & (0.822) \end{aligned}$	$\begin{aligned} & 0.5570 \\ & (0.547) \end{aligned}$	$\begin{gathered} -0.1491 \mathrm{e}^{-\mathrm{i} \delta} \\ (-0.150+0.038 \mathrm{i}) \end{gathered}$
$\begin{aligned} & 0.4129+0838 \mathrm{e}^{\mathrm{i} \delta} \\ & (-0.356+0.020 \mathrm{i}) \end{aligned}$	$\begin{gathered} 0.6057+0.0571 e^{-i \delta} \\ (0.704-0.013 i) \end{gathered}$	$\begin{aligned} & 0.6726 \\ & (0.614) \end{aligned}$
$\begin{gathered} 03831+0.0903 \text { e-i } 0 \\ (0.442+0.025 i) \end{gathered}$	$\begin{gathered} 0.5620+0.0616 e^{--1 \delta} \\ (-0.452+0.017 i) \end{gathered}$	$\begin{aligned} & 0.7248 \\ & (0.774) \end{aligned}$

PMNS matrix

More consequences?

- Phase δ could be $0,-\pi / 2, \pi / 2$??
- No more lepton families beyond 3
- For two EW basis states in R³, only 4 d.o.f. \rightarrow one massive lepton (3 d.o.f.) and one massless lepton (1 d.o.f.)
- For v to have mass, must "see" 4th dim, where there are 6 d.o.f. $\rightarrow 2$ massive

One more great clue?!

- Syzygies from invariant theory, 3 invariant eqs for each group 2T, 20, $21 \quad 1884$ Felix Klein
- Each group related to j-invariant of elliptic modular functions and linear transformations
- Group constants
$1, \quad 108, \quad 1728$
- Charged leptons:
$0.511,105.66,1776.82 \mathrm{MeV}$
- \% differences: -48.9\%, -2.17\%, +2.83\%
- Coincidence, Correlation, or Cause and effect?

Anecdote?

- Richard Feynman, in his Caltech office Nov 1987
- The Icosahedron and the solution of equations of the fifth degree (1884) by F. Klein [see Dover edition 1956]

Quarks?

- Same approach works for quark families
- 4 subgroups in $R^{4} \rightarrow 4$ quark families predicted
- $[3,3,3],[4,3,3],[3,4,3],[5,3,3]$
- $\rightarrow 4 \times 4$ CKM4 matrix \rightarrow good agreement to CKM 3x3 except for V_{ub}
- 3 lepton families acting as one $\operatorname{SU}(2)$ match 4 quark families acting as one SU(2) to cancel triangle anomaly

Possible consequences

- Predicts EW $\theta_{w}=30^{\circ}$ - agrees with latest expts
- No sterile neutrino
- Not Majorana neutrinos
- No neutrinoless double beta decay
- 2 more quarks to be discovered

Thank You!

- $2 \mathrm{~T}=[3,3,2] \Rightarrow\left(\mathrm{v}_{\mathrm{e}}, \mathrm{e}^{-}\right) \quad \theta_{1}=52.660^{\circ}$
- $2 \mathrm{O}=[4,3,2] \Rightarrow\left(\mathrm{v}_{\mu}, \mu^{-}\right) \quad \theta_{2}=18.379^{\circ}$
- $2 \mathrm{l}=[5,3,2] \Rightarrow\left(\mathrm{V}_{\mathrm{T}}, \mathrm{T}\right) \quad \theta_{3}=61.238^{\circ}$
- $34.281^{\circ}=42.859^{\circ}-8.578^{\circ}$
- Neutrino mixing occurs because 2T, 2O, 2 l act together to make SU(2) for the SM
- See my DISCRETE 2014 Conference writeup in Journal of Physics: Conference Series, Vol 631 (link)

