Charged lepton flavour violation/lepton number violation searches and studies with the CMS experiment

Sören Erdweg¹ on behalf of the CMS Collaboration

¹RWTH Aachen, Physics Institute III A

SPONSORED BY THE

Federal Ministry of Education and Research

WIN 2017 Jun. 21, 2017

Motivation

- Observation of lepton flavour violation in neutrino sector:
 - Search for lepton flavour violation in the charged leptons
 - Highly suppressed in the Standard Model
 - \rightarrow Striking signature for new physics
- New beyond the Standard Model (BSM) particles might decay lepton flavour violating
 - Little standard model background

Motivation

- Observation of lepton flavour violation in neutrino sector:
 - Search for lepton flavour violation in the charged leptons
 - Highly suppressed in the Standard Model
 - \blacksquare \rightarrow Striking signature for new physics
- New beyond the Standard Model (BSM) particles might decay lepton flavour violating
 - Little standard model background

Approach

Search for resonances decaying with lepton flavour violation + 91 GeV

+ few 100 GeV - multi TeV

- **Z** boson ($\rightarrow e\mu$)
- H boson ($\rightarrow e\tau$ or $\mu\tau$) + 125 GeV
- BSM particles ($\rightarrow e\mu$)

Presented analysis

- Medium and heavy mass resonances decaying with lepton flavour violation
- Personal selection of presented analysis

Some other CMS LFV analyses

- Search for lepton flavour violating decays of the Higgs boson to $e\tau$ and $e\mu$ in proton?proton collisions at $\sqrt{s} = 8$ TeV PLB 763C (2016) 472
- Search for heavy Majorana neutrinos in $e^{\pm}e^{\pm}$ plus jets and $e^{\pm}\mu^{\pm}$ plus jets events in proton-proton collisions at $\sqrt{s} = 8$ TeV 1603.02248
- Search for displaced leptons in the $e \mu$ channel EXO-16-022
- Search for R-parity violating supersymmetry with displaced vertices 1610.05133
- Search for R-parity violating supersymmetry in dilepton channels SUS-14-018

Outline

 $M = 1.9 \,\text{TeV}$

Introduction Overview LHC & CMS

2 Z-Boson

3 Higgs-Boson

4 BSM particle

F Erdweg

LHC

 $\sqrt{s} = 13 \,\text{TeV}$

LHC

Key figures $\sqrt{s} = 13 \, \text{TeV}$

 $\blacksquare \ \mathcal{L} = 1.53 \cdot 10^{34} \, \mathrm{s}^{-1} \mathrm{cm}^{-2}$

WIN 201

CMS

High rate (HL) Trigger rate up to 1 kHz

 $\begin{array}{l} \mbox{High resolution} \\ \mbox{e.g. muon } p_{\rm T} \\ \mbox{resolution} < 8\,\% \mbox{ at} \\ \mbox{p}_{\rm T} = 1\,\mbox{TeV} \end{array}$

CMS

High rate (HL) Trigger rate up to 1 kHz

 $\begin{array}{l} \mbox{High resolution} \\ \mbox{e.g. muon } p_{\rm T} \\ \mbox{resolution} < 8 \,\% \mbox{ at} \\ \mbox{p}_{\rm T} = 1 \, \mbox{TeV} \end{array}$

High efficiency e.g. Hadronically decaying tau reconstruction and identification efficiency: > 55 % for $p_T > 30 \text{ GeV}$

Dataset(s)

CMS Integrated Luminosity, pp

Very successful data taking over many years

- LFV Z decays: 2012, 8 TeV
- LFV BSM particle decays: 2015, 13 TeV
- LFV H decays: 2016, 13 TeV

Outline

Introduction

- 2 Z-Boson Introduction Result
- 3 Higgs-Boson
- 4 BSM particle

 $M_{e\mu} = 1.9 \text{ TeV}$

Motivation

- CMS PAS-EXO-13-005 [1] **Z** \rightarrow eµ suppressed in the SM (BR < 4 \cdot 10⁻⁶⁰)
- Clear signature for new physics (μ^+e^- or μ^-e^+)

Motivation

- CMS PAS-EXO-13-005 [1] **Z** \rightarrow eµ suppressed in the SM (BR < 4 \cdot 10⁻⁶⁰)
- Clear signature for new physics (μ^+e^- or μ^-e^+)

Analysis key points

• 2012 data set of up to 19.7 fb^{-1} of proton-proton data at $\sqrt{s} = 8 \text{ TeV}$

Search for Z mass resonance

Motivation

- CMS PAS-EXO-13-005 [1] **Z** \rightarrow eµ suppressed in the SM (BR < 4 \cdot 10⁻⁶⁰)
- Clear signature for new physics (μ^+e^- or μ^-e^+)

Analysis key points

- 2012 data set of up to 19.7 fb^{-1} of proton-proton data at $\sqrt{s} = 8 \text{ TeV}$
- Search for Z mass resonance

Event selection

- Trigger: electron + muon ($E_T > 17 \text{ GeV}$ and $E_T > 8 \text{ GeV}$)
- Particle flow identification/isolation criteria for electron / muon
- Veto other leptons, high p_T Jets, $m_T(\mu, E_T^{miss}) < 60$ GeV, $p_{T}^{e\mu} < 10 \,\text{GeV}$
- Selection efficiency: 6.6%

Systematic uncertainties Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- μ p_T scale: 2.9% (0.2%)
- e E_T scale: 3.1% (1.1%)
- E^{miss}: 0.6% (2.2%)
- eµ p_T: 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)

Systematic uncertainties Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- μ p_T scale: 2.9% (0.2%)
- e E_T scale: 3.1% (1.1%)
- E^{miss}: 0.6% (2.2%)
- eµ p_T: 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)

Systematic uncertainties Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- **μ** p_T scale: 2.9% (0.2%)
- e E_T scale: 3.1% (1.1%)
- E^{miss}: 0.6% (2.2%)
- eμ p_T: 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)

87 (obs.), 83 \pm 9 (SM exp.) events in signal region (88 - 94 GeV)

Systematic uncertainties Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- μ p_T scale: 2.9% (0.2%)
- e E_T scale: 3.1% (1.1%)
- E^{miss}: 0.6% (2.2%)
- eµ p_T: 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)

Expected limit $\mathcal{B}(\mathsf{Z} \to \mathsf{e}\mu) < (6.7^{+2.8}_{-2.0}) \cdot 10^{-7}$

Erdweg

Systematic uncertainties Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- **μ** p_T scale: 2.9% (0.2%)
- e E_T scale: 3.1% (1.1%)
- E^{miss}: 0.6% (2.2%)
- eµ p_T: 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)

Expected limit $\mathcal{B}(\mathbf{Z} \to \mathbf{e}\mu) < (6.7^{+2.8}_{-2.0}) \cdot 10^{-7}$

Observed limit $\mathcal{B}(Z \to e\mu) < 7.3 \cdot 10^{-7}$

Outline

Introduction

- 2 Z-Boson
- 3 Higgs-Boson
 - Introduction
 - Result
 - Interpretation

4 BSM particle

Summary

 $M_{e\mu} = 1.9 \, \text{TeV}$

CMS PAS-HIG-17-001 [2]

Basic idea

- Lepton flavour violating Higgs decay
- \blacksquare Two studied decays (H \rightarrow $e\tau$ / H \rightarrow $\mu\tau)$
- **•** Four final states ($\mu \tau_h$, $\mu \tau_e$, $e \tau_h$ and $e \tau_\mu$)

Basic idea

- Lepton flavour violating Higgs decay
- \blacksquare Two studied decays (H \rightarrow $e\tau$ / H \rightarrow $\mu\tau)$
- **•** Four final states $(\mu \tau_h, \mu \tau_e, e \tau_h \text{ and } e \tau_\mu)$

Analysis key points

• 2016 data set of 35.9 fb⁻¹ of proton-proton data at $\sqrt{s} = 13$ TeV

CMS PAS-HIG-17-001 [2]

- Two analysis methods: boosted decision tree (BDT) and cut based (as cross check)
- Derive limit on BR and Yukawa couplings

Basic idea

- Lepton flavour violating Higgs decay
- \blacksquare Two studied decays (H \rightarrow $e\tau$ / H \rightarrow $\mu\tau)$
- **•** Four final states $(\mu \tau_h, \mu \tau_e, e \tau_h \text{ and } e \tau_\mu)$

Analysis key points

• 2016 data set of 35.9 fb⁻¹ of proton-proton data at $\sqrt{s} = 13$ TeV

CMS PAS-HIG-17-001 [2]

- Two analysis methods: boosted decision tree (BDT) and cut based (as cross check)
- Derive limit on BR and Yukawa couplings

Event selection

- Isolated lepton triggers (e or μ)
- Split analysis in production channels (n_{Jet} and/or M_{jj})

- \blacksquare Processes with prompt leptons (e.g. $\mathrm{t}\bar{\mathrm{t}},$ Diboson and $H\to\tau\tau$)
 - Estimated from Monte Carlo simulation
 - Corrected for known mis-modelling effects
- Contribution from misidentified leptons
 - Estimated from collision data with inverted isolation

CMS.

Result for $\mu\tau$

CMS

Result for $e\tau$

CMS

Result for et

and $\Delta \phi (p_T^{\tau_{\mu}}, E_T^{miss})$

Events/bin

3500

3000

2500

2000

1500

1000 E

500

0.5

.dx3/.sdC 1.5 CMS Preliminary

et, 2 jets gg-enriched

100

Limits

CMS

• Observed and expected limit on $\mathcal{B}(H \to \mu \tau)$

Interpretation for $\mu\tau$

CMS.

Reinterpretation

Treat as LFV Yukawa coupling $Y_{\mu\tau}$

Limit: $\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 1.43 \cdot 10^{-3}$

• Observed and expected limit on $\mathcal{B}(H \to e\tau)$

CMS

Interpretation for $e\tau$

CMS.

Reinterpretation

 Treat as LFV Yukawa coupling Y_{eτ}

Limit: $\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 2.26 \cdot 10^{-3}$

Outline

Introduction

- 2 Z-Boson
- B Higgs-Boson
- 4 BSM particleIntroductionResult
 - RPV SUSY
 - QBH

 $M_{e\mu}=1.9\,\text{TeV}$

Introduction

CMS PAS-EXO-16-001 [3]

Motivation

- **R**-parity violating SUSY model (RPV $\tilde{\nu}_{\tau}$)
- Quantum black holes (QBH)
- Decay to high mass eµ pairs

Introduction

Motivation

- **R**-parity violating SUSY model (RPV $\tilde{\nu}_{\tau}$)
- Quantum black holes (QBH)
- Decay to high mass eµ pairs

Analysis key points

• 2015 data set of 2.7 fb⁻¹ of proton-proton data at $\sqrt{s} = 13$ TeV

CMS PAS-EXO-16-001 [3]

Search for high mass resonances

Introduction

Motivation

- **R**-parity violating SUSY model (RPV $\tilde{\nu}_{\tau}$)
- Quantum black holes (QBH)
- Decay to high mass eµ pairs

Analysis key points

• 2015 data set of 2.7 fb⁻¹ of proton-proton data at $\sqrt{s} = 13$ TeV

CMS PAS-EXO-16-001 [3]

Search for high mass resonances

Event selection

- Dedicated high E_T/p_T identification criteria for electrons/muons
- Final selection efficiency at $M_{\tilde{v}_{\tau}} = 1$ TeV: ~ 65% (similar for QBH)

Mass distribution

Mass distribution

Mass distribution

- R-parity violating supersymmetry (RPV SUSY) modelResonant sparticle production is allowed
 - Assume $\tilde{\nu}_{\tau}$ to be the LSP
 - Assume two dominant couplings λ'_{311} (production) and λ_{132} (decay)

 $\Gamma_{\text{tot}} = \left(3\lambda_{311}^{\prime 2} + 2\lambda_{132}^2 \right) M(\tilde{\nu}_\tau)/16\pi$

Three model parameters: $\lambda'_{311'}$, λ_{132} and $M_{\tilde{\nu}_{\tau}}$

RPV Result

Exclusion limits

- Excluded cross section × BR
- Mass limit for $\lambda = 0.01$ of 1.0 TeV

Exclusion limits

- Excluded cross section × BR
- Mass limit for $\lambda = 0.01$ of 1.0 TeV
- \blacksquare Limit also in the $M_{\tilde{\nu}_\tau} \lambda_{311}\text{-plane}$

CMS

Introduction QBH

Quantum black holes (QBH):

- Can be produced in low scale gravity scenarios at the LHC
- Planck scale smaller than a few TeV
- No Hawking radiation (many particle final state)
- Decay into $e + \mu$

Spin-0, colorless, neutral QBH

- Model parameters:
 - Threshold mass: M_{th}
 - Number of extra dimensions: n
 - Extra dimension model:
 Randall-Sundrum (RS) or Arkani-Hamed-Dimopoulos-Dvali (ADD)

Signal shape:

- Threshold of QBH production
- Signal falls for high mass due to PDFs

QBH Result

Exclusion limits

- Excluded cross section × BR
- Mass threshold limit for n = 1 (n = 6) of 2.5 TeV (4.5 TeV)

Outline

1 Introduction

2 Z-Boson

3 Higgs-Bosor

4 BSM particle

5 Summary

 $M_{e\mu} = 1.9 \,\text{TeV}$

Z Boson (CMS PAS-EXO-13-005)

- Search for $Z \to e\mu$ decays
- Limit on the branching ratio $\mathcal{B} (Z \rightarrow e\mu) < 7.3 \cdot 10^{-7}$

H Boson (CMS PAS-HIG-17-001)

- \blacksquare Search for $H \to e \tau$ and $H \to \mu \tau$ decays
- Limit on $\mathcal{B}(H \to e\tau/\mu\tau)$ of < 0.61 % / < 0.25 %
- Limit on LFV Yukawa coupling

$$\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 2.26 \cdot 10^{-3}$$

$$\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 1.43 \cdot 10^{-3}$$

BSM particles (CMS PAS-EXO-16-001)

- Search for new high mass particles decaying to eμ
- Limit on RPV: $M_{\tilde{\nu}_{\tau}} > 1.0 \text{ TeV}$ for $\lambda = 0.01$
- Limit on QBH: $M_{th} > 4.5$ TeV for n = 6

All CMS physics results can be found at • link

Backup

- Search for Lepton Flavor Violation in Z decays in pp collisions at sqrt(s)=8 TeV.
 Technical Report CMS-PAS-EXO-13-005, CERN, Geneva, 2015.
- Search for lepton flavour violating decays of the Higgs boson to $\mu\tau$ and $e\tau$ in proton-proton collisions at $\sqrt{s} = 13$ TeV. Technical Report CMS-PAS-HIG-17-001, CERN, Geneva, 2017.
- Search for high-mass resonances and quantum black holes in the eµ final state in proton-proton collisions at √s = 13 TeV.
 Technical Report CMS-PAS-EXO-16-001, CERN, Geneva, 2016.

Eventdisplay r - z view

Tau ID performance

Peak luminosity (2016)

CMS Peak Luminosity Per Day, pp, 2016, $\sqrt{s}=$ 13 TeV

Data included from 2016-04-22 22:48 to 2016-10-27 14:12 UTC

$Z \to e \mu \text{ jet } p_{\rm T}$

Region I	Region II
ℓ_1^{\pm} (isolated)	ℓ_1^{\pm} (isolated)
ℓ_2^{\mp} (isolated)	ℓ_2^{\pm} (isolated)
Region III	Region IV
ℓ_1^{\pm} (isolated)	ℓ_1^{\pm} (isolated)
l^{\mp} (non-isolated)	l^{\pm} (non-isolated)

Misidentification rate defined as (with $i = e, \mu, \tau$): $f_{i} = \frac{N_{i}(\text{region I})}{N_{i}(\text{region III}) + N_{i}(\text{region I})}$

Number of misidentified events in the signal region: N_i (misidentified) = $\frac{f_i}{1-f_i}N_i$ (region III)

CMS

$\mu \tau_e$ channel, 0 Jets

35/26

CMS

$\mu \tau_e$ channel, 1 Jets

$\mu \tau_e$ channel, 2 Jets (gg)

$\mu\tau$ results

42/20

W Erdw 43

CMS

$e\tau_{\mu}$ channel, 0 Jets

$e\tau_h$ channel, 1 Jets

$e\tau_{\mu}$ channel, 1 Jets

ш 46/2

$e\tau_{\mu}$ channel, 2 Jets (gg)

$e\tau$ results

Systematic uncertainties

Systematic uncertainty	$H \rightarrow \mu \tau_e$	$H \rightarrow \mu \tau_h$	$H \rightarrow e \tau_u$	$H \rightarrow e \tau_h$
Muon trigger/ID/isolation	2%	2%	2%	-
Electron trigger/ID/isolation	2%	-	2%	2%
Hadronic τ efficiency	-	5%	-	5%
b-tagging veto	2.0-4.5%	2.0-4.5%	2.0-4.5%	-
$Z \rightarrow \mu \mu / ee$ +jets background	10%⊕5%	-	10%⊕5%	-
$Z \rightarrow \tau \tau$ +jets background	10%⊕5%	10%⊕5%	10%⊕5%	10%⊕5%
W + jets background	10%	-	10%	-
QCD multijet background	30%	-	30%	-
WW, ZZ background	5%⊕5%	5%⊕5%	5%⊕5%	5%⊕5%
tī background	10%⊕5%	10%⊕5%	10%⊕5%	10%⊕5%
$W + \gamma background$	10%⊕5%	-	10%⊕5%	-
Single top production background	5%⊕5%	5%⊕5%	5%⊕5%	5%⊕5%
$\mu \rightarrow \tau_h$ background	-	25%	-	-
$e \rightarrow \tau_h$ background	-	-	-	12%
jet $\rightarrow \tau_h, \mu$, e background	-	30%⊕10%	-	30%⊕10%
Jet energy scale	3-20%	3-20%	3-20%	3-20%
Hadronic τ energy scale	-	1.2%	-	1.2%
$e \rightarrow \tau_h$ energy scale	-	1.5%	-	3%
Electron energy scale	$\pm \sigma$	-	$\pm \sigma$	$\pm \sigma$
Muon energy scale	0.2%	0.2%	-	$\pm \sigma$
Unclustered energy scale	$\pm \sigma$	$\pm \sigma$	$\pm \sigma$	$\pm \sigma$
acceptance scale (GF H)	-3.0 - 2.0%	-3.0 - 2.0%	-3.0 - 2.0%	-3.0 - 2.0%
acceptance scale (VBF H)	-0.3 - 1.0%	-0.3 - 1.0%	-0.3 - 1.0%	-0.3 - 1.0%
QCD scale YR4 (GF H)	3.2%	3.2%	3.2%	3.2%
QCD scale YR4 (VBF H)	2.1%	2.1%	2.1%	2.1%
acceptance PDF (GF H)	-1.5 - 0.5%	-1.5 - 0.5%	-1.5 - 0.5%	-1.5 - 0.5%
acceptance PDF (VBF H)	-1.5 - 1.0%	-1.5 - 1.0%	-1.5 - 1.0%	-1.5 - 1.0%
PDF YR4 (GF H)	3.9%	3.9%	3.9%	3.9%
PDF YR4 (VBF H)	0.4%	0.4%	0.4%	0.4%
Bin-by-bin	Shape	Shape	Shape	Shape
Luminosity	2.5%	2.5%	2.5%	2.5%
Pile-up	Shape	Shape	Shape	Shape

BDT input for $H \to \mu \tau_h$

(c) $M_{\rm T}$ (τ , $E_{\rm T}^{\rm miss}$)

(d) E_{T}^{miss}

(c) $\Delta \eta(\mu, \tau)$

(d)

ی Erdweg

BDT input for $H \rightarrow \mu \tau_e$

Erdweg م

BDT input for $H \rightarrow e \tau_h$

(a) $\Delta \eta(\mathbf{e}, \tau)$

Erdweg یہ

BDT input for $H \rightarrow e \tau_{\mu}$

ع Erdwe

Comparison to other analysis

ح Erdweg