Results from Borexino on Solar and Geo-Neutrino

Francesco Lombardi

BOREXIN

University of California San Diego

Laboratori Nazionali del Gran Sasso

on behalf of: Borexino Collaboration 06/22/2017

WIN2017

Trvine

Matycassiev of Galisonata

Main purpose and achievements The Borexino experiment is acquiring data since May 2007:

The Borexino experiment is acquiring data since May 2007: Its activity has been split in 2 phases by 6 cycles of water extraction to purify the Liquid Scintillator:

→ Phase I (2007- 2010):

- ✓ First measurement ⁷Be neutrino Flux (862 keV) with 5% of accuracy
- Exclusion of any night-day asymmetry
- First direct observation of the pep electronic neutrino (1440 keV) and first limit on CNO flux.
- Evidence of Seasonal Modulation of the fluxes
- ✓ ⁸B neutrino flux measurement at E > 3 MeV (transition energy)

> Purification campaign (2010-2011):

Unprecedented detector radio purity reached

→ Phase II (2012-2017)

- Direct measurement of pp neutrino flux
 Nature 512,383–386 (28 August 2014)
- Geoneutrinos (phase I + phase II)
- Seasonal Modulation Phase II
- Thermal insulation to improve the background stability

Borexino Detector

The Detector

Light Yield: 500 p.e./MeV $\Delta E \sim 5\%\sqrt{E}$

Shield: ~1400 m of rocks (3800 m w.e.) The muon Flux reduction by factor 10⁻⁶

 $\begin{aligned} \mathbf{R}_{\mu} &= 4310 \pm 2_{stat} \pm 10_{sys} \ d^{-1} \\ \Phi_{\mu} &= (3.41 \pm 0.01) \times 10^{-4} \ m^{-2} s^{-1} \end{aligned}$

1) Nutrino-Electron Scattering:

- Electrons accelerated by neutrinos or beta decay ionize the liquid scintillator (PC+PPO) that emit light by fluorescence
- 2) No Directionality:
 - The fluorescence light is isotropic event. It is not possible reconstruct the direction of the incident particles.
- 3) Pulse Shape Discrimination:
 - It's possible to recognize the α particle from electron because of a longer pulse shape in time
- 4) Extremely low background required (Phase I):
 - The radio-purity of Borexino is a unprecedented record. $^{238}U=(5.3 + - 0.5) \times 10^{-18} \text{ g/g}$ $^{232}Th=(3.8 + - 0.8) \times 10^{-18} \text{ g/g}$

The Signal

Borexino Experiment Solar Neutrinos

Solar Neutrinos

Event selection

Borexino Results

Borexino detector is the first neutrino detector able to perform a full spectroscopy of the solar neutrinos in real time, thanks to its incredible low background.

Borexino Background

The phase I has been characterized by a higher background and its time instability The Phase II shows a much lower background rate and a very good stability in time, with exception of 210Po due to the convective motion inside the detector.

Seasonal Modulation Phase 2 From Dec 2011 to Dec 2015: 4 years of data Data Analysis Method [Astropart.Phys. 92 (2017) 21-29]: $\frac{10^4}{10^4}$ ANN-MLP parameter • Analytic Fit • Lomb-Scargle (Fourier) Ω • Empirical Mode Decomposition (EMD) 10^{3} Data Selection: 10^{2} • Fiducial Volume 3m fixed radius mlp > 0.98• New PSD based on ANN: 10 Multilayer Perceptron (MLP) • New Empirical Mode Decomposition algorithm (CEEMDAN) 0.2 0.40.6 0.8mlp cpd/1 ton $R(t) = R_0 + \overline{R} \left[1 + \epsilon \cos \frac{2\pi}{T} (t - \phi) \right]$

Seasonal Modulation Phase 2

Analytic and Lomb-Scargle

Lomb-Scargle Power

30

Empirical Mode Decomposition

Basic Ideas:

- "Sifting": To Decompose any time series in the "Intrinsic Mode Functions" (IMF).
- No analytical shapes assumed "a priori" (it works only with interpolated polynomials)
- Analytical Function to calculate the Instantaneous Frequency, Amplitude and phase.
- Toy Montecarlo to evaluate the statistical significance of the results.

Seasonal Modulation Phase 2

Empirical Mode Decomposition Analysis

	Analytic	Lomb-Scargle	CEEMDAN	Expected
T [day]	367 ± 10	_	351 ± 18	365.24
$f [year^{-1}]$	0.99 ± 0.03	$1.0\pm4\%$	1.04 ± 0.04	1.0
$\varepsilon(\times 10^{-2})$	(1.74 ± 0.45)	1.43 ± 0.01	1.68 ± 0.31	1.67
arepsilon(%)	$(7.1 \pm 1.9)\%$	$(5.7 \pm 0.4)\%$	$(6.7 \pm 1.2)\%$	6.7~%
$\phi \; [{ m day}]$	-18 ± 24	—	14 ± 22	+3

Borexino Experiment Geo-Neutrino

Geo-Neutrinos:

We call "Geo-neutrinos" the antineutrinos emitted by the beta-decay of:

 $\begin{array}{ll} {}^{238}U \rightarrow {}^{206}Pb + 8\alpha + 8e^- + 6\overline{\nu}_e + 51.7 MeV & Th/U = 3.9 \\ {}^{232}Th \rightarrow {}^{208}Pb + 6\alpha + 4e^- + 4\overline{\nu}_e + 42.8 MeV & K/U = 1.2 \times 10^4 \\ {}^{40}K \rightarrow {}^{40}Ca + e^- + \overline{\nu}_e + 1.32 MeV & K/U = 1.2 \times 10^4 \end{array}$

The geoneutrinos provide us an important information about radioactive element abundances in the interior of the Earth.

Nuclear plants Background:

The main background are the nuclear plants around the word. We consider 446 plants and their monthly nominal power provided by IAEA. ^{235}U : ^{238}U : ^{239}Pu : $^{241}Pu = 0.542 : 0.411 : 0.022 : 0.0243$

Borexino Signal:

- Dataset phase 1+ phase 2: 15 Dec $2007 \rightarrow 8$ March 2015
- Fiducial Volume: (613+/-26) ton
- Dynamic Fiducial Volume (30cm away from the vessel)
- Detection by means inverse beta decay:

$$\overline{\nu}_e + p \to e^+ + n$$

• Event Energy Threshold: 1.806 MeV

"prompt signal": e^+ energy loss T_{e^+} + annihilation (2 x 0.511 MeV) $E_{prompt} = E_{geonu} - 0.784$ MeV

"delayed signal": neutron neutron thermalisation & capture on protons, emission of 2.2 MeV γ $\tau \sim 250 \ \mu s$

Borexino Results

Final fit of Prompt events spectrum. Background NON-antineutrino <1%. The Th and U spectral shapes have been generated by mean of MC.

Null Hypothesis of geoneutrinos excluded at 5.9 σ .

Borexino Results

Assuming the chondritic mass ratio the fluxes of geoneutrinos are:

$$\phi(U) = (2.7 \pm 0.7) \times 10^6 \ cm^{-2} \ s^{-1}$$

$$\phi(Th) = (2.3 \pm 0.6) \times 10^6 \ cm^{-2} \ s^{-1}$$

We can make an estimation of the radiogenic heat between 23-36 TW. The Best fit within 1σ is 11-52 TW

Taking into account the potassium chondritic mass ratio K/U=10⁴, the total Earth's radiogenic power is: $D(U + Th + K) = 22^{+28}TW$

$$P(U + Th + K) = 33^{+28}_{-20}TW$$

while the total power is $P_{tot} = 47 + -2$ TW.

Thank you!

Seasonal Modulation Phase 1

Larger fiducial volume thanks to the Dvnamic FV

Hard cut α/β on Gatti parameter (PSD): strong reduction of beta events.

Background instable in time: we cannot sum data in different years.

Borexino Phase I Results:

v ⁸ B: Phys.Rev.D 82, 0330066 (2010)				
	3.0–16.3 MeV	5.0–16.3 MeV		
Rate [cpd/100 t]	$0.22 \pm 0.04 \pm 0.01$	$0.13 \pm 0.02 \pm 0.0$		
$\Phi_{exp}^{ES} [10^6 \text{ cm}^{-2} \text{ s}^{-1}]$	$2.4 \pm 0.4 \pm 0.1$	$2.7\pm0.4\pm0.2$		
$\Phi_{ m exp}^{ m ES}/\Phi_{ m th}^{ m ES}$	0.88 ± 0.19	1.08 ± 0.23		

 ν ⁷Be:

PRL 107, 1411302 (2011) PHYSICAL REVIEW D 89, 112007 (2014)

TABLE I.	Average fit results [counts/(day \cdot 100 ton)].
⁷ Be	$46.0 \pm 1.5(\text{stat})^{+1.5}_{-1.6}(\text{syst})$
⁸⁵ Kr	$31.2 \pm 1.7(\text{stat}) \pm 4.7(\text{syst})$
²¹⁰ Bi	$41.0 \pm 1.5(\text{stat}) \pm 2.3(\text{syst})$
¹¹ C	$28.5 \pm 0.2(\text{stat}) \pm 0.7(\text{syst})$

Pep-CNO

TFC and C11 subtraction Fit

-0.4

-0.6

-0.2

PS-BDT parameter

0.2

0

Procedure:

- Multivariate Fit:
 - Spectrum w/ and w/o ^{11}C
 - → Radial Distribution
- Boosted Decision Tree:
 - Pulse Shape discrimination positron and electron
- Strong Bi210 and pep correlation with **CNO**

last column gives the ratio between our measurement and the high metallicity (GS98) SSM [9].

,	Interaction rate [counts/(day · 100 ton)]	Solar- ν flux [10 ⁸ cm ⁻² s ⁻¹]	Data/SSM ratio
pep CNO	$\begin{array}{l} 3.1 \pm 0.6_{stat} \pm 0.3_{syst} \\ < 7.9 ~(< 7.1_{stat ~only}) \end{array}$	$1.6 \pm 0.3 < 7.7$	$1.1 \pm 0.2 < 1.5$

Fit of Residual Spectrum

0.5

1.5

Radius [m]

2.5

-0.8

pp neutrino

107

10⁶

10

104

10³

10²

Arbitrary Units

Phase II Borexino background: [cpd/100 ton]				
⁸⁵ Kr: 1	+/-9 (stat)			
²¹⁰ Bi: 27	+/-3 (sys) +/- 8 (stat) +/- 3 (sys)			
²¹⁰ Po: 583	+/- 2 (stat) +/- 12 (sys)			
R(pp) = 144 + -13 (stat)				
Nature 512,3	+/- 10 (sys) 83–386 (28 August 2014)			

 $R(^{14}C) = 40 + -1 Bq/100t$ (independent measurement)

Synthetic pile-up R(¹⁴C): 154+/-10 cpd/100 ton (whole spectrum)

250

Calibration Campaign

- The Calibration have been performed by means of the standard sources with a telescopic arm inserted within the Inner Vessel.
- The Full energy scale has been covered. Energy resolution: $\Delta E \sim 5\% \sqrt{E}$
- The position reconstruction has been calibrated putting the source in different position. - Selecting the energy range 800-900 keV by means of the
- events present on Vessel, a Dynamic reconstruction of its profile 5.0 Source deployment locations has been done. 0.124.0 4.8 Inner Vessel inner vesse 0.1 4.6 Reconstruction 3.0 0.08 Counts 0.06 2.0 E 0.04 1.0 z[m] 200 600 800 1000 1200 400 0.0 Npe Isotope -1.0 $\cos(\theta)$ Inner vessel Type Energy [keV] ⁵⁷Co 122 + 14 (89%) ⁵⁷Co 136 (11%) ⁷Be-annual IV -2.0 ¹³⁹Ce 165 $^{222}Rn + {}^{14}C$ ²⁰³Hg 279 Am-Be (n) ⁸⁵Sr 514 ²⁰³Hg ⁵⁴Mn -3.0 834 57Co ⁶⁵Zn 1115 z [m] 139Ce ⁶⁰Co 1173. 1332 85Sr ⁴⁰K 1460 4.0 ${}^{85}Sr + {}^{65}Zn + {}^{60}Co$ ²²²Rn 0 - 3200αβ ^{14}C 0-156 ${}^{54}Mn + {}^{40}K$ ²⁴¹Am-⁹Be neutrons < 110005.0 γ (H) 2233 γ (¹²C) 4946 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Outer buffer -2 -4 -3 -1 2 3 Distance from z axis [m] 0

 ρ [m]

²²⁸Th (²⁰⁸Tl)

2615

