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CP Violation in neutrino oscillations




C, P, T in neutrino oscillations

the Jarlskog invariant J = s12c12s23c23s13c
2
13 sin �. CP violation and T violation are related

in a neat manner.

The case of CPT�V (i.e., ACPT
↵� 6= 0) is not so simple as one can have CP violation, T

violation or both and apriori there is no straightforward connection between them

A

CP
↵� 6= A

T
↵� and A

CP
↵↵ 6= 0 , A

T
↵↵ 6= 0 . (4)

Moreover, the disappearance probabilities can also lead to non-zero CP asymmetries.

Imposing the unitarity condition, we obtain

A

CP
ee + A

CP
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CP
e⌧ = 0

A

CP
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CP
µµ + A

CP
µ⌧ = 0

A

CP
⌧e + A

CP
⌧µ + A

CP
⌧⌧ = 0 (5)

Obviously, these asymmetries present themselves in di↵erent channels (appearance and dis-
appearance) that can be employed to study CP violation. J is not the only source of CP
violation in this case.

2.2 Model for CPT Violation

CPT�V e↵ects that can be phenomenologically described by e↵ective interactions of the
form

LCPT�V = ⌫̄

↵
Lb

↵�
µ �

µ
⌫

�
L , (6)

where b

↵�
µ represents CPT�V. The propagation of neutrinos is governed by a Schrödinger-

type equation with the e↵ective Hamiltoninan in presence of CPT�V as follows

H = Hvac +HSI +HCPT�V , (7)

where Hvac is the vacuum Hamiltonian and HSI,HCPT�V are the e↵ective Hamiltonians in
presence of SI alone and CPT�V respectively. Note that the terms appearing in HCPT�V do
not depend upon the medium properties. In general, the dispersion relation gets modified
in present of HCPT�V. The index of refraction in the CPT�V scenario corresponds to the
existence of an intrinsic background field that isotropically permeates the vacuum. The
nature of this and other background fields has been extensively studied for theories with
Lorentz invariance violation (see [40] for a review). Thus,
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where A(x) = 2
p
2EGFne(x) is the standard CC potential due to the coherent forward scat-

tering of neutrinos and ne is the electron number density. We assume rotational invariance
so the nine parameters (aL)↵� denoting isotropic component of the CPT�V terms charac-
terize deviations from CPT�C. The three flavour neutrino mixing matrix U [⌘ U23 W13 U12

with W13 = U� U13 U †
� and U� = diag{1, 1, exp (i�)}] is characterized by three angles and a
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accelerator (with beam power of upto 1.2 MW) at Fermi National Accelerator Laboratory
(Fermilab) to produce high intensity neutrino source. For the far detector, a massive liquid
argon time-projection chamber (LArTPC) would be deployed deep underground at a depth
of 4850 feet at the Sanford Underground Research Facility located at the site of the former
Homestake Mine in Lead, South Dakota (where Ray Davis carried out the solar neutrino
experiment during 1967-1993) and is about 1300 km from the neutrino source at Fermilab. In
addition, a high precision near neutrino detector is planned at a distance of approximately
500 m from the target at Fermilab site. The baseline of 1300 km is expected to deliver
optimal sensitivity to CP violation, measurement of � and at the same time is long enough
to address the question of neutrino mass hierarchy [37–39]. It is worth mentioning that CP
violation can be established at 3� level if we consider DUNE for at least ⇠ 68% of CP phase
values [7,8] and it has been shown that a combination of di↵erent experiments can increase
this fraction to ⇠ 80% for reasonable exposures [38].

The plan of the article is as follows. We first briefly outline the NSI framework and give the
present constraints on NSI parameters in Sec. 2. We then go on to describe observable CP
asymmetry for the particular channel ⌫µ ! ⌫e relevant for DUNE both in vacuum and in
matter (SI and NSI) in Sec. 3. We present our results and discussions in Sec. 4 and discuss
the event rates obtained at DUNE far detector in Sec. 5. We end with conclusions in Sec. 6.

2 Framework

2.1 Preliminaries : CP, T and CPT asymmetries

C, P, T are discrete symmetries that refer to charge conjugation, parity and time reversal
respectively. Before going on to discuss the CPT�V case, let us review the relations between
the probabilities in the CPT�C scenario for appearance and disappearance channels. Let
us define the following asymmetries (involving neutrinos and antineutrinos) :

A

CP
↵� =

P↵� � P̄↵�

P↵� + P̄↵�
, A

T
↵� =

P↵� � P�↵

P↵� + P�↵
, A

CPT
↵� =

P↵� � P̄�↵

P↵� + P̄�↵
. (1)

where P↵� is the probability for transition ⌫↵ ! ⌫� and P̄↵� is the probability for transition
⌫̄↵ ! ⌫̄�. We first briefly review the case of CPT�C (i.e., ACPT

↵� = 0) which immediately
relates CP and T transformations and leads to

A

CP
↵� = �A

CP
�↵ and A

CP
↵↵ = 0 . (2)

Due to this, the CP asymmetry vanishes when ↵ = � in the limit of CPT�C. Further, if we
assume unitarity of the mixing matrix (i.e.,

P
� P↵� = 1 =

P
� P̄↵�) then all the CP and T

asymmetries in the appearance channels are equal to one another

A

CP
eµ = A

CP
µ⌧ = A

CP
⌧e / �P ,

A

T
eµ = A

T
µ⌧ = A

T
⌧e / �P , (3)

where �P is the single probability di↵erence in the appearance channel responsible for CP
(T) violation. �P contains the CP phase � appearing in the mixing matrix and is related to
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• Assume CPT Invariance - 

• Assume Unitarity - 
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No CP asymmetry in survival probability

Single CP / T asymmetry

Jarlskog’s factor

For three flavours, there can be only three independent CP asymmetries



CP asymmetries : in vacuum
• The best channel is mu to e, the CP asymmetry is

Grows with L and 1/ERef : Marciano and Parsa,  hep-ph/0610258

The sign of ∆m2
32 is undetermined. For m3 > m2, normal ordering, neutrinoless double beta

decay is highly suppressed, while for m2 > m3, inverted hierarchy, there is a chance that it
could be observable in the next generation of experiments. So, determining the sign of ∆m2

32 is
important. In the case of θ23, maximal mixing, θ23 ≃ 45◦ is favored. How close that angle is to
45◦ and whether it is less than or greater than 45◦ (currently only sin22θ23 is determined) is a
key issue for model building. A very precise measurement is strongly warranted.

Solar neutrino and the Kamland reactor oscillation experiments indicate[1]

∆m2
21 = m2

2 − m2
1 = 8 ± 1 × 10−5eV2 (3a)

sin2 2θ12 ≃ 0.84 ± 0.10, θ12 ≃ 33◦ ± 4◦ (3b)

The angle θ12 is large but not maximal.
Within the 3 generation formalism, what remains to be determined are the value of θ13,

which is currently bounded[1]

0 ≤ sin2 2θ13
<∼ 0.14, (4)

by reactor experiments, along with the phase, δ, about which nothing is currently known

− 180◦ ≤ δ < 180◦ (5)

After those parameters are determined, one will have an intrinsic measure of leptonic
CP violation via the Jarlskog invariant[2]

JCP ≡
1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δ. (6)

From the known angles (sin2 2θ12 ≈ 0.8, sin2 2θ23 ≃ 1)

JCP ≃ 0.23 sin θ13 sin δ, (7)

which suggests it is potentially enormous in comparison with the quark CKM matrix value

JCKM
CP ≃ 3 ± 1 × 10−5 (8)

Besides determining the ∆m2
ij, their signs, θij and δ as precisely as possible, one would also like

to have precision redundancy in those studies which probes deviations due to “new physics”
such as sterile neutrino mixing, extra dimensions, exotic neutrino interactions, etc.

2. CP Violation
The flavor changing oscillations νµ → νe and ν̄µ → ν̄e have a very rich structure which includes
CP violation. The oscillation probability is given by 3 important contributions as well as matter
effects and smaller terms (which we neglect)[3, 4]

P (νµ → νe) = PI(νµ → νe) + PII(νµ → νe) + PIII(νµ → νe) + matter + smaller terms (9)

ACP =

cos ✓23 sin 2✓12 sin �

sin ✓23 sin ✓13

✓
�m2

21L

4E

◆
+matter e↵ects

⇠ 1/ sin ✓13

⇠ cot ✓23

ACP =
Pµe � P̄µe

Pµe + P̄µe

PI(νµ → νe) = sin2 θ23 sin2 2θ13 sin2

(

∆m2
31L

4Eν

)

(10)

PII(νµ → νe) =
1

2
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13

sin

(

∆m2
21L

2Eν

)

×

[

sin δ sin2

(

∆m2
31L

4Eν

)

+ cos δ sin

(

∆m2
31L

4Eν

)

cos

(

∆m2
31L

4Eν

)]

(11)

PIII(νµ → νe) = sin2 2θ12 cos2 θ13 cos2 θ23 sin2

(

∆m2
21L

4Eν

)

(12)

while for ν̄µ, δ → −δ and matter effects change sign.
The rich structure of νµ → νe oscillations is nicely illustrated in Figs. 1-4 for BNL-

Homestake and Fermilab-Homestake distances. Matter modifies the oscillation amplitudes and
peak positions (the effect is opposite for an inverted hierarchy), making it straight forward to
determine the sign of ∆m2

31 with only a νµ beam. Also, the effect of δ is important even for
δ = 0, no CP violation. By measuring the νµ oscillation probability as function of a L

Eν
over

a broad rage, one can in principle measure all the parameters of neutrino oscillations with no
degeneracies in δ, θ23 and the mass hierarchy by a fit to Eq(9). For that reason, we favor[3, 4, 5]
using an on axis broad band neutrino beam for 0.5 GeV ≤ Eν ≤ 5 GeV .

Do we need to know the value of θ13 before we embark on measuring δ? Not really, since
the degree of difficulty for measuring δ is to a large extent independent of θ13 (unless it is very
small) and the baseline distance (for 1200 km <∼ L <∼ 4000 km ) if we use the wide band beam.
To see that feature, consider the CP violation asymmetry.

ACP ≡
P (νµ → νe) − P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)
(13)

It is given to leading order in ∆m2
21 (assuming sin2 2θ13 is not too small) by

ACP ≃
cos θ23 sin 2θ12 sin δ

sin θ23 sin θ13

(

∆m2
21L

4Eν

)

+matter effects (14)

For fixed Eν , the asymmetry grows linearly with distance and increases as θ13 gets smaller. Of
course |ACP | is bounded by 1; so, if it exceeds that value, e.g. if sin2 2θ13

<∼ 0.003, a breakdown
in our assumption about the dominance of PI in the denominator of eq.(13) is occurring.

The statistical figure of merit[3] is given by

F.O.M. =
(

δACP

ACP

)−2

=
A2

CP N

1 − A2
CP

(15)

where N is the total number of νµ → νe + ν̄µ → ν̄e events (properly normalized). Since N falls
(roughly) as sin2 θ13 and A2

CP ∼ 1/ sin2 θ13, we see that to a first approximation the F.O.M. is
independent of sin θ13. Similarly, for a given Eν the neutrino flux and consequently N falls as
1/L2 but that is canceled by L2 in A2

CP . So, to a good approximation, our ability to measure
CP violation is insensitive to L(at oscillation max.) and the value of θ13 (if it is not too small).

⌫µ ! ⌫e

Interference term

To leading order in �m2
21
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observables have been introduced [61] which can prove useful not only to establish whether
CP violation e↵ects arise purely due to the Dirac type CP phase or a combination of the
intrinsic and extrinsic CP phases but also to distinguish between the cases based on spectral
di↵erences. In the present work, we are interested in bringing out the contribution coming
from NSI towards the CP violation signal measured in terms of ACP

µe (�).

Let us consider the ⌫µ ! ⌫e transition for propagation in vacuum and matter described
below.

3.1 Review of Pµe (�) in vacuum :

In vacuum, the oscillation probability for the ⌫µ ! ⌫e channel is given by
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where J = c12c23c
2
13s12s23s13 sin � is an invariant that quantifies CP violation in the leptonic

sector and is referred to as the Jarlskog invariant. The abbreviations sij = sin ✓ij, cij =
cos ✓ij are used in Eq. 10. For the CP-transformed channel (⌫̄µ ! ⌫̄e), we need to replace
� ! �� in Eq. 10 to obtain P̄µe (�).
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can be used to obtain the position of peaks in Pµe (�) for L = 1300 km (relevant for DUNE).
n = 1, 2, 3, . . . leads to E

peak ⇠ 2.5, 0.8, 0.5 . . . GeV for the first few peaks in vacuum
probability.

3.2 Pµe (�) in matter in presence of non-standard interactions :

The approximate expression for oscillation probability for ⌫µ ! ⌫e for NSI case can be
obtained by retaining terms of O("↵�s13), O("↵�r�) , O(s13r�), O(r2�) and neglecting the
higher order terms,
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where Jr = J / sin � and � = �eµ + �, ! = �e⌧ + �. Note that only two parameters, "eµ and
"e⌧ enter in this leading order expression which implies that the rest of the NSI parameters
are expected to play a sub-dominant role. The approximate expression (Eq. 12) allows
us to illustrate the qualitative impact of the moduli and phases of NSI terms which can in
principle override e↵ects due to the vacuum oscillation phase � for certain choice of energies.
Also, the above expression is strictly valid when r��L/2 ⌧ 1 i.e. L and E are far away from
the region where lower frequency oscillations dominate which is satisfied for long baseline
experiments. For the case of DUNE, we have

r��L/2 = 0.125
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Note that in addition to the vacuum oscillation frequency �L/2

�L/2 = 4.0
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which has E�1-dependence on energy, matter (SI and NSI) introduces phase shifts such as
rA�L/2 (using A = 0.756⇥ 10�4

eV

2
⇢ (g/cc) E (GeV ))

rA�L/2 = 0.4


1.267⇥ 0.756⇥ 10�4 ⇢

3.0 g/cc

L

1300 km

�
, (15)
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observables have been introduced [61] which can prove useful not only to establish whether
CP violation e↵ects arise purely due to the Dirac type CP phase or a combination of the
intrinsic and extrinsic CP phases but also to distinguish between the cases based on spectral
di↵erences. In the present work, we are interested in bringing out the contribution coming
from NSI towards the CP violation signal measured in terms of ACP
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can be used to obtain the position of peaks in Pµe (�) for L = 1300 km (relevant for DUNE).
n = 1, 2, 3, . . . leads to E

peak ⇠ 2.5, 0.8, 0.5 . . . GeV for the first few peaks in vacuum
probability.
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In the standard three flavour paradigm, there is only one CP phase

⌫µ ! ⌫e
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by three angles and a single (Dirac) phase and, in the standard PMNS parameterisation,
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where sij = sin ✓ij, cij = cos ✓ij. While, in addition, two Majorana phases are also possible,
these are ignored as they play no role in neutrino oscillations. This particular parameter-
isation along with the fact of H

SI

commuting with U
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, allows for a simplification. Going
over to the basis, ⌫̃ = U †
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where we have defined dimensionless ratios
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Once again, H̃NSI = U †
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and the last term in Eq. (9) is
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where ✏↵� (⌘ |✏↵�| ei�↵�) are complex. For atmospheric and long baseline neutrinos, �L '
O(1) holds and rAL ⇠ O(1) for a large range of the E and L values considered here. The
small quantities are r� ' 0.03 and ✏̃↵�. If We decompose H̃ into two parts : H̃ = H̃
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while H̃I contains the other two terms (on the RHS of Eq. (9)) which represent corrections
due to non-zero r� and the non-zero NSI parameters ✏̃↵� respectively. Upon neglecting terms
like r�s13, r�s

2
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, we get an approximate form for H̃I , viz.,
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Intrinsic and extrinsic CP effects
• in vacuum

.

•  in matter with standard interactions
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Figure 1: Comparison of vacuum and matter (SI) asymmetry, ACP
µe (�) for L = 1300 km. The vacuum

(matter, SI) case is shown in brown (cyan) for three di↵erent values of � and for NH as well as IH. The
solid, dashed and dotted lines correspond to � = 0, � = ⇡/2 and � = �⇡/2 respectively.

4 Results and Discussion

Let us first discuss the case of vacuum. Using the CP-odd terms in Eq. 10, the numerator
in the CP asymmetry (defined in Eq. 9) �Pµe (�) is given by 8
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where the second line is obtained after rearranging the terms in the first line. In order
to have observable e↵ects, we should have sizeable interference terms that involve the CP
violating phase �. This implies that both �L/2 as well as r��L/2 must be taken into account.
Naturally, the A

CP
µe (�) vanishes as � ! 0, ⇡ and when � = ±⇡/2, ACP

µe (�) attains maximal
values. Also it can be noted that the normalised A

CP
µe (�) grows linearly with L/E.

Using Eq. 12, the numerator in the CP asymmetry (Eq. 9) for the SI ("↵� ! 0 limit) can
be expressed in a compact form

�Pµe (�) = 8 r�J
sin rA�L/2

rA
[⇥� cot � cos�L/2 +⇥+ sin�L/2] , (17)

where ⇥± = sin[(rA � 1)�L/2]/(rA � 1) ± sin[(rA + 1)�L/2]/(rA + 1). The CP sensitivity
comes from terms proportional to r� in this case. In contrast to the vacuum expression, the
A

CP
µe (0) 6= 0 and this can be attributed to the fake CP e↵ects arising due to matter being

CP asymmetric. In the limit rA ! 0, one would expect non-zero vacuum terms to remain

8The denominator
P

Pµe (�) has the e↵ect of rescaling the asymmetry curves.
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Non-zero asymmetry for 
zero CP phase 

Non-zero asymmetry at 
large E 

Hierarchy dependence
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where sij = sin ✓ij, cij = cos ✓ij. While, in addition, two Majorana phases are also possible,
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where we have defined dimensionless ratios
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Once again, H̃NSI = U †
23
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23

and the last term in Eq. (9) is
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where ✏↵� (⌘ |✏↵�| ei�↵�) are complex. For atmospheric and long baseline neutrinos, �L '
O(1) holds and rAL ⇠ O(1) for a large range of the E and L values considered here. The
small quantities are r� ' 0.03 and ✏̃↵�. If We decompose H̃ into two parts : H̃ = H̃

0

+ H̃I

such that the zeroth order term H̃
0

provides the e↵ective two flavour limit with rA 6= 0 and
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while H̃I contains the other two terms (on the RHS of Eq. (9)) which represent corrections
due to non-zero r� and the non-zero NSI parameters ✏̃↵� respectively. Upon neglecting terms
like r�s13, r�s
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, we get an approximate form for H̃I , viz.,
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Figure 1: Comparison of vacuum and matter (SI) asymmetry, ACP
µe (�) for L = 1300 km. The vacuum

(matter, SI) case is shown in brown (cyan) for three di↵erent values of � and for NH as well as IH. The
solid, dashed and dotted lines correspond to � = 0, � = ⇡/2 and � = �⇡/2 respectively.

4 Results and Discussion

Let us first discuss the case of vacuum. Using the CP-odd terms in Eq. 10, the numerator
in the CP asymmetry (defined in Eq. 9) �Pµe (�) is given by 8

�Pµe (�) = 8J

sin(r��L) sin

2 �L

2
� sin(�L) sin2 r��L

2

�

= 4 sin � Jr [sin�L/2 sin r��L/2 sin (1� r�)�L/2] , (16)

where the second line is obtained after rearranging the terms in the first line. In order
to have observable e↵ects, we should have sizeable interference terms that involve the CP
violating phase �. This implies that both �L/2 as well as r��L/2 must be taken into account.
Naturally, the A

CP
µe (�) vanishes as � ! 0, ⇡ and when � = ±⇡/2, ACP

µe (�) attains maximal
values. Also it can be noted that the normalised A

CP
µe (�) grows linearly with L/E.

Using Eq. 12, the numerator in the CP asymmetry (Eq. 9) for the SI ("↵� ! 0 limit) can
be expressed in a compact form

�Pµe (�) = 8 r�J
sin rA�L/2

rA
[⇥� cot � cos�L/2 +⇥+ sin�L/2] , (17)

where ⇥± = sin[(rA � 1)�L/2]/(rA � 1) ± sin[(rA + 1)�L/2]/(rA + 1). The CP sensitivity
comes from terms proportional to r� in this case. In contrast to the vacuum expression, the
A

CP
µe (0) 6= 0 and this can be attributed to the fake CP e↵ects arising due to matter being

CP asymmetric. In the limit rA ! 0, one would expect non-zero vacuum terms to remain

8The denominator
P

Pµe (�) has the e↵ect of rescaling the asymmetry curves.
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see also M. Masud and P. Mehta, Phys. Rev. D (2016) [1603.01389]

observables have been introduced [61] which can prove useful not only to establish whether
CP violation e↵ects arise purely due to the Dirac type CP phase or a combination of the
intrinsic and extrinsic CP phases but also to distinguish between the cases based on spectral
di↵erences. In the present work, we are interested in bringing out the contribution coming
from NSI towards the CP violation signal measured in terms of ACP

µe (�).

Let us consider the ⌫µ ! ⌫e transition for propagation in vacuum and matter described
below.

3.1 Review of Pµe (�) in vacuum :

In vacuum, the oscillation probability for the ⌫µ ! ⌫e channel is given by

Pµe (�) = 4(c213s
2
23s

2
13 + J sin r��L) sin
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2

+ 2(c12c23c
2
13s12s23s13 cos � � c

2
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12s
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+ 4(c212c
2
23c

2
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2
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2
13s

4
12s

2
23s

2
13 � 2c12c23c

2
13s

3
12s23s13 cos � � J sin�L)sin2 r��L

2

+ 8(c12c23c
2
13s12s23s13 cos � � c

2
13s

2
12s

2
23s

2
13) sin

2 r��L

2
sin2 �L

2
(10)

where J = c12c23c
2
13s12s23s13 sin � is an invariant that quantifies CP violation in the leptonic

sector and is referred to as the Jarlskog invariant. The abbreviations sij = sin ✓ij, cij =
cos ✓ij are used in Eq. 10. For the CP-transformed channel (⌫̄µ ! ⌫̄e), we need to replace
� ! �� in Eq. 10 to obtain P̄µe (�).

The maximal 1� 3 mixing condition

L

E

= (2n� 1)
⇡

2

1

1.267⇥ �m

2
31(eV

2)
, (11)

can be used to obtain the position of peaks in Pµe (�) for L = 1300 km (relevant for DUNE).
n = 1, 2, 3, . . . leads to E

peak ⇠ 2.5, 0.8, 0.5 . . . GeV for the first few peaks in vacuum
probability.

3.2 Pµe (�) in matter in presence of non-standard interactions :

The approximate expression for oscillation probability for ⌫µ ! ⌫e for NSI case can be
obtained by retaining terms of O("↵�s13), O("↵�r�) , O(s13r�), O(r2�) and neglecting the
higher order terms,

Pµe (�) ' 4s213s
2
23
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Matter non-standard interactions

These are referred to as “matter or propagation NSI”


New physics effects act as sub-leading effects in the discussion of 
oscillation formalism 


These can severely impact determination of standard oscillation 
parameters and lead to more complicated parameter degeneracies 

dard Model amplitude. In view of the excellent agreement of data with standard flavour
conversion via oscillations, we would like to explore the extent to which NSI (incorporated
into the Lagrangian phenomenologically via small parameters) is empirically viable, with
specific focus on atmospheric neutrino signals in future detectors. NSI in the context of
atmospheric neutrinos has been studied by various authors [15–19]. Also there are studies
pertaining to other new physics scenarios using atmospheric neutrinos such as CPT viola-
tion [20, 21], violation of the equivalence principle [22], large extra dimension models [23]
and sterile neutrinos [24–26].

Finally, as an application, we discuss how NSI impacts the determination of the correct
octant for ✓

23

. Typically, Earth matter e↵ects have been exploited to break the degeneracy
associated with this parameter [27–29]. Here we discuss, via an example, how a particular
NSI parameter ✏µ⌧ interferes with the determination of the correct octant for atmospheric
neutrinos that is nominally sought to be e↵ected through the study of the ⌫µ ! ⌫µ channel.
A detailed study of the octant determination in presence of NSI parameters for the case of
atmospheric neutrinos is currently under progress [30].

The plan of the article is as follows. We first briefly outline the NSI framework in Sec. 2
and subsequently discuss the neutrino oscillation probabilities in presence of NSI using
the perturbation theory approach (in Sec. 3). We describe the features of the neutrino
oscillograms in Sec. 4. We give the details of our analysis in Sec. 5 and the discussion on
events generated for the two detector types in Sec. 6. Finally, we conclude in Sec. 7.

2 Neutrino NSI Framework: relevant parameters and present
constraints

As in the case of standard weak interactions, a wide class of “new physics scenarios” can be
conveniently parameterised in a model independent way at low energies (E ⌧ MEW , where
MEW is the electroweak scale) by using e↵ective four-fermion interactions. In general,
NSI can impact the neutrino oscillation signals via two kinds of interactions : (a) charged
current (CC) interactions (b) neutral current (NC) interactions. However, CC interactions
a↵ect processes only at the source or the detector and these are are clearly discernible at
near detectors (see for example, [31,32]). On the other hand, the NC interactions a↵ect the
propagation of neutrinos which can be studied only at far detectors. Due to this decoupling,
the two can be treated in isolation. Usually, it is assumed that the CC NSI terms (e.g.,
of the type (⌫̄��µ

PLl↵)(f̄L�µPCf
0
L) with f, f

0 being the components of a weak doublet) are
more tightly constrained than the NC terms and, hence, are not considered. It turns out,
though, that, in specific models, the two can be of comparable strengths [33]. However,
since we are interested in NSI that alter the propagation of neutrinos, we shall consider the
NC type of interactions alone.

The e↵ective Lagrangian describing the NC type neutrino NSI of the type (V �A)(V ±A)
is given by3

LNSI = �2
p
2GF ✏

f C
↵� [⌫̄↵�

µ
PL⌫�] [f̄�µPCf ] , (1)

3One could think that other Dirac structures generated by intermediate scalar (S), pseudoscalar (P ) or
tensor (T ) fields may also be there. However, these would only give rise to subdominant e↵ects.
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Ref: Wolfenstein (1978), Grossman (1995), Berezhiani, Rossi (2002), Davidson et al. (2003) 
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oscillograms in Sec. 4. We give the details of our analysis in Sec. 5 and the discussion on
events generated for the two detector types in Sec. 6. Finally, we conclude in Sec. 7.

2 Neutrino NSI Framework: relevant parameters and present

constraints

As in the case of standard weak interactions, a wide class of “new physics scenarios” can be
conveniently parameterised in a model independent way at low energies (E ⌧ MEW , where
MEW is the electroweak scale) by using e↵ective four-fermion interactions. In general,
NSI can impact the neutrino oscillation signals via two kinds of interactions : (a) charged
current (CC) interactions (b) neutral current (NC) interactions. However, CC interactions
a↵ect processes only at the source or the detector and these are are clearly discernible at
near detectors (see for example, [27,28]). On the other hand, the NC interactions a↵ect the
propagation of neutrinos which can be studied only at far detectors. Due to this decoupling,
the two can be treated in isolation. Usually, it is assumed that the CC NSI terms (e.g.,
of the type (⌫̄��µ

PLl↵)(f̄L�µPCf
0
L) with f, f

0 being the components of a weak doublet) are
more tightly constrained than the NC terms and, hence, are not considered. It turns out,
though, that, in specific models, the two can be of comparable strengths [29]. However,
since we are interested in NSI that alter the propagation of neutrinos, we shall consider the
NC type of interactions alone.

The e↵ective Lagrangian describing the NC type neutrino NSI of the type (V �A)(V ±A)
is given by3

LNSI = �2
p
2GF ✏

f C
↵� [⌫̄↵�

µ
PL⌫�] [f̄�µPCf ] , (1)

where GF is the Fermi constant, ⌫↵, ⌫� are neutrinos of di↵erent flavours, and f is a first
generation SM fermion (e, u, d) 4. The chiral projection operators are given by PL = (1 �
�

5

)/2 and PC = (1 ± �

5

)/2. If the NSI arises at scale MNP � MEW from some higher
dimensional operators (of order six or higher), it would imply a suppression of at least
✏

fC
↵� ' (MEW/MNP )2 (for MNP ⇠ 1 TeV , we have ✏

fC
↵� ' 10�2). However, such a naive

dimensional analysis argument breaks down if the new physics sector is strongly interacting

3One could think that other Dirac structures generated by intermediate scalar (S), pseudoscalar (P ) or
tensor (T ) fields may also be there. However, these would only give rise to subdominant e↵ects.

4Coherence requires that the flavour of the background fermion (f) is preserved in the interaction. Second
or third generation fermions do not a↵ect oscillation experiments since matter does not contain them.

2

Ref: Review by T. Ohlsson (2012)

Talks by Li, Kayser, Marfatia, Mocioiu,…



Matter non-standard interactions

Matter NSIs

Three-flavor neutrino evolution equation with matter NSIs:

i
d

dt
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Wolfenstein (1978); Valle (1987); Guzzo, Masiero, Petcov (1991); Roulet (1991)

In general, this gives rise to rather cumbersome neutrino transition probabilities.
T. Ohlsson (KTH) Non-Standard Neutrino Interactions (IPP12) 12 / 29

T. Ohlsson 

Flavour dependent refraction in the NC piece 
(diagonal as well as off-diagonal NSI terms)

Oscillation Parameter Best-fit value 3� range Precision (%)

sin2

✓

12

/10�1 3.23 2.78 - 3.75 14.85
sin2

✓

23

/10�1 (NH) 5.67 (4.67)a 3.92 - 6.43 24.25
sin2

✓

23

/10�1 (IH) 5.73 4.03 - 6.40 22.72
sin2

✓

13

/10�2 (NH) 2.34 1.77 - 2.94 24.84
sin2

✓

13

/10�2 (IH) 2.40 1.83 - 2.97 23.75
�m

2

21

[10�5 eV2] 7.60 7.11 - 8.18 7.00
|�m2

31

| [10�3 eV2] (NH) 2.48 2.30 - 2.65 7.07
|�m2

31

| [10�3 eV2] (IH) 2.38 2.30 - 2.54 5.00
�/⇡ (NH) 1.34 0.0 - 2.0 -
�/⇡ (IH) 1.48 0.0 - 2.0 -

aThis is a local minimum in the first octant of ✓
23

with ��

2 = 0.28 with respect
to the global minimum.

Table 1: Best-fit values and the 3� ranges for the oscillation parameters used in our
analysis [4]. Also given is the precision which is defined as ratio (in percentage) of the
di↵erence of extreme values to the sum of extreme values of parameters in the 3� range.
Here NH (IH) refer to normal (inverted) hierarchy.

and E (especially above a GeV). This “one mass scale dominant” (OMSD) approximation
allows for a relatively simple exact analytic formula for the probability (as a function of
only three parameters ✓

23

, ✓

13

and �m

2

31

) for the case of constant density matter [46] with no
approximation on s

13

, and it works quite well9. In order to systematically take into account
the e↵ect of small parameters, the perturbation theory approach is used. We review the
necessary formulation for calculation of probabilities that a↵ect the atmospheric neutrino
propagation using the perturbation theory approach [40].

In the ultra-relativistic limit, the neutrino propagation is governed by a Schrödinger-type
equation (see [53]) with an e↵ective Hamiltonian

H = H
vac

+H
SI

+H
NSI

, (6)

where H
vac

is the vacuum Hamiltonian and H
SI

,H
NSI

are the e↵ective Hamiltonians in
presence of SI alone and NSI respectively. Thus,

H =
1

2E

8
<

:U

0

@
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�m

2

21

�m

2

31

1

AU † + A(x)

0

@
1 + ✏ee ✏eµ ✏e⌧

✏eµ
?

✏µµ ✏µ⌧

✏e⌧
?

✏µ⌧
?

✏⌧⌧

1

A

9
=

; , (7)

where A(x) =
p
2GFne(x) is the standard CC potential due to the coherent forward scat-

tering of neutrinos and ne is the electron number density. The three flavour neutrino mixing

9This approximation breaks down if the value of ✓13 is small since the terms containing �m2
21 can be

dropped only if they are small compared to the leading order term which contain ✓13. After the precise
measurement of the value of ✓13 by reactor experiments, this approximation is well justified. For multi-GeV
neutrinos, this condition (L/E ⌧ 104 km/GeV) is violated for only a small fraction of events with E ' 1
GeV and L � 104 km.
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Blennow et al (2008)
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Probability at 1300 km and flux

.

To exploit the full three flavour effects in neutrino oscillations 

constrain the known parameters and measure the unknown parameters


DUNE has a broad program of neutrino oscillation physics

Beam covers first  (2.5 GeV) and second (0.8 GeV) oscillation maxima

will run in both neutrino and antineutrino mode for ~6-10 years


28 2 The Science of LBNE

Baseline (km)
1000 2000 3000

 (G
eV

)
νE

0.1

1.0

10.0

0

0.05

0.1

0.15

0.2
=0cpδ), NH, eν → µνP(

13
00

 k
m

 vac. osc. max
st

1 

 vac. osc. max
nd

2 

), NHeν → µνP(
0 0.05 0.1 0.15 0.2

 (G
eV

)
νE

0.1

1.0

10.0
/2π = -cpδ

 = 0cpδ
/2π = +cpδ

=0 (solar term)13θ

At 1300 km

Baseline (km)
1000 2000 3000

 (G
eV

)
νE

0.1

1.0

10.0

0

0.05

0.1

0.15

0.2
=0cpδ), NH, eν → µνP(

13
00

 k
m

 vac. osc. max
st

1 

 vac. osc. max
nd

2 

), NHeν → µνP(
0 0.05 0.1 0.15 0.2

 (G
eV

)
νE

0.1

1.0

10.0
/2π = -cpδ

 = 0cpδ
/2π = +cpδ

=0 (solar term)13θ

At 1300 km

Figure 2.3: Neutrino oscillation probabilities as a function of energy and baseline, for different values of
”CP, normal hierarchy. The oscillograms on the left show the ‹µ æ ‹e oscillation probabilities as a function
of baseline and energy for neutrinos (top left) and antineutrinos (bottom left) with ”CP = 0. The figures
on the right show the projection of the oscillation probability on the neutrino energy axis at a baseline of
1,300 km for ”CP = 0 (red), ”CP = +fi/2 (green), and ”CP = ≠fi/2 (blue) for neutrinos (top right) and
antineutrinos (bottom right). The yellow curve is the ‹e appearance solely from the “solar term” due to ‹1
to ‹2 mixing as given by Equation 2.14.

The variation in the ‹µ æ ‹e oscillation probabilities with the value of ”CP indicates that it is
experimentally possible to measure the value of ”CP at a fixed baseline using only the observed
shape of the ‹µ æ ‹e or the ‹µ æ ‹e appearance signal measured over an energy range that
encompasses at least one full oscillation interval. A measurement of the value of ”CP ”= 0 or fi,
assuming that neutrino mixing follows the three-flavor model, would imply CP violation. The CP

The Long-Baseline Neutrino Experiment

2.2 Neutrino Three-Flavor Mixing, CP Violation and the Mass Hierarchy 27

of producing and detecting ‹· ’s, the oscillation modes ‹µ,e æ ‹e,µ provide the most promising
experimental signatures of leptonic CP violation.

For ‹µ,e æ ‹e,µ oscillations that occur as the neutrinos propagate through matter, as in terrestrial
long-baseline experiments, the coherent forward scattering of ‹e’s on electrons in matter modifies
the energy and path-length dependence of the vacuum oscillation probability in a way that de-
pends on the magnitude and sign of �m2

32. This is the Mikheyev-Smirnov-Wolfenstein (MSW)
effect [71,72] that has already been observed in solar-neutrino oscillation (disappearance) experi-
ments [73,74,75,76]. The oscillation probability of ‹µ,e æ ‹e,µ through matter, in a constant density
approximation, keeping terms up to second order in – © |�m2

21|/|�m2
31| and sin2 ◊13, is [77,55]:

P (‹µ æ ‹e) ≥= P (‹e æ ‹µ) ≥= P0 + Psin ”¸ ˚˙ ˝
CP violating

+Pcos ” + P3 (2.12)

where

P0 = sin2 ◊23
sin2 2◊13

(A ≠ 1)2 sin2[(A ≠ 1)�], (2.13)

P3 = –2 cos2 ◊23
sin2 2◊12

A2 sin2(A�), (2.14)

Psin ” = –
8Jcp

A(1 ≠ A) sin � sin(A�) sin[(1 ≠ A)�], (2.15)

Pcos ” = –
8Jcp cot ”CP

A(1 ≠ A) cos � sin(A�) sin[(1 ≠ A)�], (2.16)

and where
� = �m2

31L/4E, and A =
Ô

3GF Ne2E/�m2
31.

In the above, the CP phase ”CP appears (via Jcp) in the expressions for Psin ” (the CP-odd term)
which switches sign in going from ‹µ æ ‹e to the ‹µ æ ‹e channel, and Pcos ” (the CP-conserving
term) which does not. The matter effect also introduces a neutrino-antineutrino asymmetry, the
origin of which is simply the presence of electrons and absence of positrons in the Earth.

Recall that in Equation 2.2, the CP phase appears in the PMNS matrix through the mixing of
the ‹1 and ‹3 mass states. The physical characteristics of an appearance experiment are therefore
determined by the baseline and neutrino energy at which the mixing between the ‹1 and ‹3 states
is maximal, as follows:

L(km)
E‹(GeV) = (2n ≠ 1)fi

2
1

1.27 ◊ �m2
31(eV2) (2.17)

¥ (2n ≠ 1) ◊ 510 km/GeV (2.18)

where n = 1, 2, 3... denotes the oscillation nodes at which the appearance probability is maximal.

The dependences on E‹ of the oscillation probability for the LBNE baseline of L =1,300 km are
plotted on the right in Figures 2.3 and 2.4. The colored curves demonstrate the variation in the ‹e

appearance probability as a function of E‹ , for three different values of ”CP.

The Long-Baseline Neutrino Experiment
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Experimental Infrastructure:
The FNAL → SURF Beam

● Beam requirements

– 1.2 MW, upgradeable to 2.3 MW 
(120GeV protons):

● POT/pulse: 7.5x1013 p

● Cycle time: 1.2 sec

● Uptime:       56%

– Direction 5.8° downward

– Wide-band spectrum covering the 
1st and 2nd oscillation maxima

● Upgrades from reference design

– PIPII: increase p throughput

– Horn current: 200 kA → 230 kA

– Target design: C → Be, shape

– Decay Pipe: 204 m → 250 m

– Horn design optimization

● Can use 60 - 80 GeV protons

– Increase flux at 2nd max

– Reduces high energy tail

– Need more POT to maintain power

Unoscillated

nµ flux at the

DUNE FD

With Horn 
Optimization

Ref : LBNE 
Collaboration,  

1307.7335 

CDR, Vol 2, DUNE Collaboration, 
1512.06148 [physics.ins-det] 

http://arxiv.org/abs/arXiv:1512.06148


CP Violation sensitivity

.

Red band : Reference - 
optimised beam design


Sensitivity depends on  


systematics


statistics (300 
kt.MW.yr)


true value of 
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Figure 3.13: The significance with which the CP violation can be determined as a function of the value
of ”CP for an exposure of 300 kt · MW · year assuming normal MH (left) or inverted MH (right). The
shaded region represents the range in sensitivity due to potential variations in the beam design.

Table 3.7: The minimum exposure required to determine CP violation with a significance of 3‡ for 75%
of ”CP values or 5‡ for 50% of ”CP values for the CDR reference beam design and the optimized beam
design.

Significance CDR Reference Design Optimized Design
3‡ for 75% of ”CP values 1320 kt · MW · year 850 kt · MW · year
5‡ for 50% of ”CP values 810 kt · MW · year 550 kt · MW · year

Volume 2: The Physics Program for DUNE at LBNF LBNF/DUNE Conceptual Design Report

100% not possible - at least the CPC values (0,pi) are to be excluded !

CDR, Vol 2, DUNE Collaboration, 
1512.06148 [physics.ins-det] 

Talks by Sousa, Bian

�CP, ✓23, �m
2
31

http://arxiv.org/abs/arXiv:1512.06148


Why 1300 km ?

.

  6

The DUNE Experimental Setup

● Oscillation Physics:

– Baseline of 1300 km

– A megawatt class beam covering 

the 1st and 2nd oscillation maxima

– A highly capable ND to constrain 

the FD event rate prediction

– A large (40 kt), high resolution 

FD deployed deep underground

– Exposure of 6-10 yr with    

~50% / 50% n / n running

– Sensitivity to dcp and the MH in 

the same experiment

● DUNE is designed to provide a broad program of n oscillation 

physics, n interaction physics, underground science, and physics 

beyond the standard model

1300 km

Phys.Rev. D91 (2015) 5, 052015 

D
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p
p
e
a
ra

n
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e

Baseline choice is guided by physics -  optimise the 
sensitivity to CPV and MH in a single experiment

M. Bass et al, Phys.Rev. D91 (2015) no.5, 052015  - PRE-DUNE era / LBNE, see also M. V. Diwan et al, Ann. Rev. Nucl. 
Part. Sci. (2016) 66, 47-71 for review on long baseline neutrino experiments



The subdominant NSI terms complicate the 
inferences of oscillation parameters 
drastically at long baselines… and make 
extraction of intrinsic CP phase very hard !


Talks by Li, Kayser, Marfatia, Mocioiu,…
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Higher energy region seems better from the point 
of view of separating NSI from SI



Figure 6: Oscillogram of absolute relative CP asymmetry for the appearance channels.

are indistinguishable. The spectral di↵erences are also visible more prominently in the
sterile case.

3.2 Test of unitarity violation - oscillograms

We use coloured oscillograms in the plane of E and L as our tool to depict our observations.
For the case of SI and NC NSI, the three flavour unitarity is maintained and therefore if
we plot the sum of CP odd probability di↵erences, we expect to get blank regions in these
cases. However, for the case of one additional sterile neutrino, we obtain what is shown in
Fig. 5. As we can see, there is pattern appearing in the plot and this has been explained in
Appendix A. Primarily, the wiggles are arising due to the large �m2 oscillations in the 1� 4
sector. For long baseline neutrino experiments, sin2(�L/2) ' O(1) which gives

�L

2
' 1.57


�m

2
31

2.5⇥ 10�3
eV

2

2.5 GeV

E

L

1300 km

�
for DUNE, (22)

for the first oscillation maximum (minimum) in the appearance (disappearance) channel.
We note that E = 1.5 GeV, L = 810 km for NOvA and E = 0.6 GeV, L = 295 km for T2K
(and also T2HK) also lead to �L ⇠ ⇡. The location of first oscillation maximum (using

12

Extracting the intrinsic CP phase

J. Rout, M. Masud and P. Mehta,  PRD 95, 075035 (2017) [1702.02163]

Dark region in NSI/Sterile gives fake 
impression that we can extract 
intrinsic component better…

�[�PCP
↵� ] = [�PCP

↵� ](�13 = ⇡/2)� [�PCP
↵� ](�13 = 0)

Nunokawa, Parke, Valle (2008)

A useful quantity for separating intrinsic and extrinsic components

|"eµ| = 0.04, |"e⌧ | = 0.04, "ee = 0.04 ✓14 = 8�, ✓24 = 5�, ✓34 = 15�

|�[�PCP
↵� ]|⇥ 100



Can we separate new physics scenarios 
from the standard ?


M. Masud, M. Bishai and P. Mehta, 1704.08650 [hep-ph]

Idea - Define a “theoretical metric” and 
“use feasible experimental handles”



High energy Beam tunes at DUNE

M. Masud, M. Bishai and P. Mehta, 1704.08650 [hep-ph]

Can we have other possible beam options other than the optimised  
one used in CDR ?


The aim is to get better separability of SI from NSI… 
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is the electron
number density. The three terms in Eq. 1 are due
to vacuum, matter with standard interaction (SI) and
matter with NSI respectively. For the NSI case, the
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. As a result of the hermiticity of the
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phases and six amplitudes appearing H
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). Thus, there
are new genuine sources of CP violation as well as new
fake sources of CP violation (aka matter e↵ects) that can
change the asymmetries even further. For more details,
see [10, 14, 15] and references therein.

To quantify the separation of physics scenarios (SI-NSI
separation), we define1 the (statistical) �
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order to interpret results -
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where, we have marginalised over the standard CP phase
� in the test dataset. This �2 was calculated using a set of
conservative values of the non-zero NSI parameters (|"

eµ

|
= 0.04, |"

e⌧

| = 0.04 "

ee

= 0.4) [23, 24].

NEUTRINO BEAM TUNES

For this study, we considered three wide-band beam
tunes obtained from a full Geant4 simulation [25, 26] of a
neutrino beamline using NuMI-style focusing. The tunes
considered are: low energy (LE); medium energy (ME);
and high energy (HE) as shown in Fig. 1. These tunes
are consistent with what could be achieved by the LBNF
facility. The energy range considered is E = 0.5 � 20
GeV. The beamline parameters assumed for the di↵erent
design fluxes used in our sensitivity calculations are given
in Table I (see [27, 28]).

Parameter LE ME HE

Proton Beam Ep+ = 120 GeV, 1.2 - 2.4 MW

Focusing 2 NuMI horns, 230kA, 6.6 m apart
Target location -25cm -1.0m -2.5m
Decay pipe length 250 m 250 m 250 m
Decay pipe diameter 4 m 4 m 4m

TABLE I. Beamline parameters assumed for the di↵erent
design fluxes used in our sensitivity calculations [27, 28]. The
target is a thin Be cylinder 2 interaction lengths long. The
target location is given with respect to the upstream face of
Horn 1.

1 The definition of the �2 in Eq. 3 includes only statistical e↵ects
and facilitates our understanding. The systematic e↵ects are
taken into account in the numerical results.

./new/flux_comparison.pdf

FIG. 1. Comparison of the di↵erent flux tunes (LE, ME, HE) in
the neutrino running mode.

RESULTS AND DISCUSSION

We have implemented a GLoBES [29, 30] simulation
of a 1300 km baseline neutrino beam experiment using a
parameterization of the DUNE far detector response as
described in [28]. We assume normal hierarchy (NH) in
all the plots. We show the variation in the ⌫

e

event spec-
trum in Fig. 2 for the LE, ME and HE beam tunes under
SI-only and SI+NSI scenarios. In all beams, the red and
magenta dashed lines (for � ⇠ ±⇡/2 with NSI) lie almost
completely within the cyan band (SI for � 2 [�⇡,⇡])
and that makes the separation between the two consid-
ered scenarios more di�cult. The black dashed lines (for
� ⇠ 0 with NSI) lie farthest apart from the cyan band
(SI). This particular feature results in better separability
between the two considered scenarios at values of � ⇠ 0
(or ±⇡). In addition, better separation is obtained at
higher energies in the ME and HE beams.
In Fig. 3, we show the ability of DUNE to separate

SI from NSI using di↵erent combinations of beam tunes
and running times at the �

2 level. The first panel is for
an equal distribution of run time among neutrino and
anti-neutrino modes while the second panel corresponds
to running in neutrino-only mode with the same total
run time. For this analysis, we consider the energy range
E 2 0.5 � 20 GeV. A CP conserving NSI scenario is as-
sumed in this plot2. We have considered a combination

2 We assume 'eµ = 'e⌧ = 0.

Beamline parameters LE ME

HE

Experimental configurations from Alion et al. [DUNE 
collaboration], 1606.09550



Event spectrum at DUNE for different tunes
⌫µ ! ⌫e

Better ability to separate black curve from cyan band

M. Masud, M. Bishai and P. Mehta, 1704.08650 [hep-ph]

Falling flux kills the large asymmetry and large E
|"eµ| = 0.04, |"e⌧ | = 0.04, "ee = 0.4



CPV sensitivity at DUNE for different tunes

M. Masud, M. Bishai and P. Mehta, 1704.08650 [hep-ph]

Black solid curves (SI case) and grey bands (NSI case with variation in NSI 
phases) - without marginalization 


Dashed black curves (SI) - with marginalization

LE

ME

HE



SI-NSI separation at DUNE

M. Masud, M. Bishai and P. Mehta, 1704.08650 [hep-ph]
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For this study, we considered three wide-band beam
tunes obtained from a full Geant4 simulation [25, 26] of a
neutrino beamline using NuMI-style focusing. The tunes
considered are: low energy (LE); medium energy (ME);
and high energy (HE) as shown in Fig. 1. These tunes
are consistent with what could be achieved by the LBNF
facility. The energy range considered is E = 0.5 � 20
GeV. The beamline parameters assumed for the di↵erent
design fluxes used in our sensitivity calculations are given
in Table I (see [27, 28]).

Parameter LE ME HE

Proton Beam Ep+ = 120 GeV, 1.2 - 2.4 MW

Focusing 2 NuMI horns, 230kA, 6.6 m apart
Target location -25cm -1.0m -2.5m
Decay pipe length 250 m 250 m 250 m
Decay pipe diameter 4 m 4 m 4m

TABLE I. Beamline parameters assumed for the di↵erent
design fluxes used in our sensitivity calculations [27, 28]. The
target is a thin Be cylinder 2 interaction lengths long. The
target location is given with respect to the upstream face of
Horn 1.

1 The definition of the �2 in Eq. 3 includes only statistical e↵ects
and facilitates our understanding. The systematic e↵ects are
taken into account in the numerical results.
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FIG. 1. Comparison of the di↵erent flux tunes (LE, ME, HE) in
the neutrino running mode.

RESULTS AND DISCUSSION

We have implemented a GLoBES [29, 30] simulation
of a 1300 km baseline neutrino beam experiment using a
parameterization of the DUNE far detector response as
described in [28]. We assume normal hierarchy (NH) in
all the plots. We show the variation in the ⌫

e

event spec-
trum in Fig. 2 for the LE, ME and HE beam tunes under
SI-only and SI+NSI scenarios. In all beams, the red and
magenta dashed lines (for � ⇠ ±⇡/2 with NSI) lie almost
completely within the cyan band (SI for � 2 [�⇡,⇡])
and that makes the separation between the two consid-
ered scenarios more di�cult. The black dashed lines (for
� ⇠ 0 with NSI) lie farthest apart from the cyan band
(SI). This particular feature results in better separability
between the two considered scenarios at values of � ⇠ 0
(or ±⇡). In addition, better separation is obtained at
higher energies in the ME and HE beams.
In Fig. 3, we show the ability of DUNE to separate

SI from NSI using di↵erent combinations of beam tunes
and running times at the �

2 level. The first panel is for
an equal distribution of run time among neutrino and
anti-neutrino modes while the second panel corresponds
to running in neutrino-only mode with the same total
run time. For this analysis, we consider the energy range
E 2 0.5 � 20 GeV. A CP conserving NSI scenario is as-
sumed in this plot2. We have considered a combination

2 We assume 'eµ = 'e⌧ = 0.

Neutrino only run allows for better 
discrimination between SI and NSI


Better ability at CP conserving values

Theoretical metric



SI-NSI separation at DUNE

M. Masud, M. Bishai and P. Mehta, 1704.08650 [hep-ph]

LE+HE is slightly better than LE+ME



Fraction for SI/NSI separation

M. Masud, M. Bishai and P. Mehta, 1704.08650 [hep-ph]

LE only case - the separability 
between SI and NSI is less!

The combination of LE with ME/HE helps !



Impact of non-zero NSI phases

M. Masud, M. Bishai and P. Mehta, 1704.08650 [hep-ph]

Generalization of previous plots corresponding to zero NSI phases (CP 
conserving NSI scenario) High sensitivity



Conclusions

Establishing whether CP is violated or not and measuring its value is 
an important primary science goal of the long baseline experiment, 
DUNE and we would like to answer this question as cleanly as 
possible.


Effects at sub-leading level such as NSI in propagation can confuse 
the inferences about some of the unknowns e.g. : CP phase, mass 
hierarchy and octant of theta 23


We have demonstrated an important usefulness of high energy 
beam tunes… i.e. those could be used to address the question of 
separation between SI and NSI (or any other new physics 
scenarios).

26
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Direct bounds on matter NSI 

dard Model amplitude. In view of the excellent agreement of data with standard flavour
conversion via oscillations, we would like to explore the extent to which NSI (incorporated
into the Lagrangian phenomenologically via small parameters) is empirically viable, with
specific focus on atmospheric neutrino signals in future detectors. NSI in the context of
atmospheric neutrinos has been studied by various authors [15–19]. Also there are studies
pertaining to other new physics scenarios using atmospheric neutrinos such as CPT viola-
tion [20, 21], violation of the equivalence principle [22], large extra dimension models [23]
and sterile neutrinos [24–26].

Finally, as an application, we discuss how NSI impacts the determination of the correct
octant for ✓

23

. Typically, Earth matter e↵ects have been exploited to break the degeneracy
associated with this parameter [27–29]. Here we discuss, via an example, how a particular
NSI parameter ✏µ⌧ interferes with the determination of the correct octant for atmospheric
neutrinos that is nominally sought to be e↵ected through the study of the ⌫µ ! ⌫µ channel.
A detailed study of the octant determination in presence of NSI parameters for the case of
atmospheric neutrinos is currently under progress [30].

The plan of the article is as follows. We first briefly outline the NSI framework in Sec. 2
and subsequently discuss the neutrino oscillation probabilities in presence of NSI using
the perturbation theory approach (in Sec. 3). We describe the features of the neutrino
oscillograms in Sec. 4. We give the details of our analysis in Sec. 5 and the discussion on
events generated for the two detector types in Sec. 6. Finally, we conclude in Sec. 7.

2 Neutrino NSI Framework: relevant parameters and present
constraints

As in the case of standard weak interactions, a wide class of “new physics scenarios” can be
conveniently parameterised in a model independent way at low energies (E ⌧ MEW , where
MEW is the electroweak scale) by using e↵ective four-fermion interactions. In general,
NSI can impact the neutrino oscillation signals via two kinds of interactions : (a) charged
current (CC) interactions (b) neutral current (NC) interactions. However, CC interactions
a↵ect processes only at the source or the detector and these are are clearly discernible at
near detectors (see for example, [31,32]). On the other hand, the NC interactions a↵ect the
propagation of neutrinos which can be studied only at far detectors. Due to this decoupling,
the two can be treated in isolation. Usually, it is assumed that the CC NSI terms (e.g.,
of the type (⌫̄��µ

PLl↵)(f̄L�µPCf
0
L) with f, f

0 being the components of a weak doublet) are
more tightly constrained than the NC terms and, hence, are not considered. It turns out,
though, that, in specific models, the two can be of comparable strengths [33]. However,
since we are interested in NSI that alter the propagation of neutrinos, we shall consider the
NC type of interactions alone.

The e↵ective Lagrangian describing the NC type neutrino NSI of the type (V �A)(V ±A)
is given by3

LNSI = �2
p
2GF ✏

f C
↵� [⌫̄↵�

µ
PL⌫�] [f̄�µPCf ] , (1)

3One could think that other Dirac structures generated by intermediate scalar (S), pseudoscalar (P ) or
tensor (T ) fields may also be there. However, these would only give rise to subdominant e↵ects.

2

The constraints involving muon neutrinos are at least an order of magnitude stronger (cour-
tesy the NuTeV and CHARM scattering experiments) than those involving electron and
tau neutrino [35]. (b) With the assumption that the errors on individual NSI terms are
uncorrelated, the authors in Ref. [33] deduce model-independent bounds on e↵ective NC
NSI terms
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Note that the values mentioned in Eq. (5) are larger by one or two orders of magnitude
than the overly restrictive bounds of Eq. (3), which, of course, need not be applicable.

Apart from the model independent theoretical bounds, two experiments have used the neu-
trino data to constrain NSI parameters. The SK NSI search in atmospheric neutrinos
crossing the Earth found no evidence in favour of NSI and the study led to upper bounds on
NSI parameters [36] given by |✏µ⌧ | < 0.033, |✏⌧⌧ � ✏µµ| < 0.147 (at 90% CL) in a two flavour
hybrid model [5] 7. The o↵-diagonal NSI parameter ✏µ⌧ is constrained �0.20 < ✏µ⌧ < 0.07
(at 90% CL) from MINOS data in the framework of two flavour neutrino oscillations [37,38].
However the bounds are still rather uncertain 8 and hence we choose to use less restrictive
values than the ones mentioned above. Moreover, we note that the existing experimental
bounds depend upon various assumptions such as the two flavour approximation. Addi-
tionally, the allowed ranges of NSI parameters have been recently extracted using global
analysis of neutrino data in Ref. [39]. Following the other studies on neutrino NSI in prop-
agation [40], we will use a value of |✏↵�| = 0.15 for the parameters ✏µ⌧ , ✏eµ and ✏e⌧ appearing
in the present work. This value is eminently in agreement with Eq. (5).

3 Neutrino oscillation probability in matter with NSI

The purpose of the analytic expressions presented here is to understand the features in
the probability in the presence of NSI. All the plots presented in this paper are obtained
numerically by solving the full three flavour neutrino propagation equations using the PREM
density profile of the Earth, and the latest values of the neutrino parameters as obtained
from global fits (see Table 1).

The analytic computation of probability expressions in presence of SI [41–47] as well as
NSI [40, 48–52] has been carried out for di↵erent experimental settings by various authors.
Note that, for atmospheric neutrinos, one can safely neglect the smaller mass squared dif-
ference �m

2

21

in comparison to �m

2

31

since �m

2

21

L/4E ⌧ 1 for a large range of values of L

7The SK collaboration uses a di↵erent normalization (nd) while writing the e↵ective NSI parameter (see
Eq. (2)) and hence we need to multiply the bounds mentioned in Ref. [36] by a factor of 3.

8The experimental uncertainties (statistical and systematic) are substantial for the NSI parameters.

4

Ref: Biggio, Blennow, Fernandez-Martınez, arXiv:0907.0097

Ref: Wolfenstein (1978), Grossman (1995), Berezhiani, Rossi (2002), Davidson et al. (2003) 

more restrictive

found no evidence in favour of NSI and the study led to upper bounds on NSI parameters [27]
given by |✏µ⌧ | < 0.033, |✏⌧⌧ � ✏µµ| < 0.147 (at 90% CL) in a two flavour hybrid model [22]5.
The o↵-diagonal NSI parameter ✏µ⌧ is constrained �0.20 < ✏µ⌧ < 0.07 (at 90% CL) from
MINOS data in the framework of two flavour neutrino oscillations [28, 29].

We will be interested in particular channels ⌫µ ! ⌫e (and the CP transformed channel, ⌫̄µ !
⌫̄e) where only two of the NSI parameters (✏eµ, ✏e⌧ ) appear in the second order expression.
Taking into account the constraints from neutrino experiments, we can write (see also [30])
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We will use the values ✏eµ, ✏e⌧ ⇠ 0.1 which are consistent with Eq. 8. For comparison with
even smaller values, we also use values that are an order of magnitude lower than 0.1. In
addition, we explore the collective e↵ect of the relevant NSI parameters (✏eµ, ✏e⌧ ) that a↵ect
the particular channel ⌫µ ! ⌫e (and ⌫̄µ ! ⌫̄e).

All the plots presented in this paper are obtained numerically by solving the full three
flavour neutrino propagation equations using the PREM [31] density profile of the Earth,
and the latest values of the neutrino parameters as obtained from global fits (see Table 1).

Oscillation Parameter Best-fit value 3� range Precision (%)

sin2
✓12/10�1 3.23 2.78 - 3.75 14.85

sin2
✓23/10�1 (NH) 5.67 (4.67)a 3.92 - 6.43 24.25

sin2
✓23/10�1 (IH) 5.73 4.03 - 6.40 22.72

sin2
✓13/10�2 (NH) 2.34 1.77 - 2.94 24.84

sin2
✓13/10�2 (IH) 2.40 1.83 - 2.97 23.75

�m

2
21 [10

�5 eV2] 7.60 7.11 - 8.18 7.00
|�m2

31| [10�3 eV2] (NH) 2.48 2.30 - 2.65 7.07
|�m2

31| [10�3 eV2] (IH) 2.38 2.30 - 2.54 5.00
�/⇡ (NH) 1.34 0.0 - 2.0 -
�/⇡ (IH) 1.48 0.0 - 2.0 -

aThis is a local minimum in the first octant of ✓23 with ��

2 = 0.28 with respect
to the global minimum.

Table 1: Best-fit values and the 3� ranges for the oscillation parameters used in our
analysis [3]. Also given is the precision which is defined as ratio (in percentage) of the
di↵erence of extreme values to the sum of extreme values of parameters in the 3� range.
Here NH (IH) refer to normal (inverted) hierarchy.

5The SK collaboration uses a di↵erent normalization (nd) while writing the e↵ective NSI parameter (see
Eq. (2)) and hence we need to multiply the bounds mentioned in Ref. [27] by a factor of 3.
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as can happen in a variety of models. We shall, hence, admit even larger ✏

fC
↵� as long as

these are consistent with all current observations. In general, NSI terms can be complex.
Naively, SU(2) invariance would dictate that operators involving ⌫Li must be accompanied
by ones containing the corresponding charged lepton field, thereby leading to additional CC
interactions. This, however, can be avoided by applying to SU(2) breaking and/or invoking
multiple fields and interactions in the heavy (or hidden) sector. Rather than speculate
about the origin of any such mechanism, we assume here (as in much of the literature) that
no such CC terms exist.

The new NC interaction terms can a↵ect the neutrino oscillation physics either by causing
the flavour of neutrino to change (⌫↵ + f ! ⌫� + f) i.e., flavour changing (FC) interaction
or, by having a non-universal scattering amplitude of NC for di↵erent neutrino flavours
i.e., flavour preserving (FP) interaction. At the level of the underlying Lagrangian, NSI
coupling of the neutrino can be to e, u, d. However, from a phenomenological point of view,
only the sum (incoherent) of all these individual contributions (from di↵erent scatterers)
contributes to the coherent forward scattering of neutrinos on matter. If we normalize5 to
ne, the e↵ective NSI parameter for neutral Earth matter6 is
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where nf is the density of fermion f in medium crossed by the neutrino and n refers to
neutrons. Also, ✏f↵� = ✏

fL
↵� + ✏

fR
↵� which encodes the fact that NC type NSI matter e↵ects are

sensitive to the vector sum of NSI couplings.

Let us, now, discuss the constraints on the NC type NSI parameters. As mentioned above,
the combination that enters oscillation physics is given by Eq. (2). The individual NSI terms
such as ✏fL↵� or ✏fR↵� are constrained in any experiment (keeping only one of them non-zero at
a time) and moreover the coupling is either to e, u, d individually [30]. In view of this, it is
not so straightforward to interpret those bounds in terms of an e↵ective ✏↵�. There are two
ways : (a) One could take a conservative approach and use the most stringent constraint in
the individual NSI terms (say, use |✏uµ⌧ |) to constrain the e↵ective term (say, |✏µ⌧ |) in Eq. (2)
and that leads to
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1

A
. (3)

The constraints involving muon neutrinos are at least an order of magnitude stronger (cour-
tesy the NuTeV and CHARM scattering experiments) than those involving electron and
tau neutrino [31]. (b) With the assumption that the errors on individual NSI terms are
uncorrelated, the authors in Ref. [29] deduce model-independent bounds on e↵ective NC
NSI terms
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5If we normalize to either up or down quark abundance (assume isoscalar composition of matter) instead,
there is a relative factor of 3 which will need to be incorporated accordingly.

6For neutral Earth matter, there are 2 nucleons (one proton and one neutron) per electron. For neutral
solar matter, there is one proton for one electron, and ✏↵� = ✏e↵� + 2✏u↵� + 2✏d↵�
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• Model-independent, assume uncorrelated errors on 
NSI terms (neutral Earth matter)
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Note that the values mentioned in Eq. (5) are larger by one or two orders of magnitude
than the overly restrictive bounds of Eq. (3), which, of course, need not be applicable.

Apart from the model independent theoretical bounds, two experiments have used the
neutrino data to constrain NSI parameters which are more restrictive. The SK NSI search in
atmospheric neutrinos crossing the Earth found no evidence in favour of NSI and the study
led to upper bounds on NSI parameters [32] given by |✏µ⌧ | < 0.033, |✏⌧⌧�✏µµ| < 0.147 (at 90%
CL) in a two flavour hybrid model [5]7. The o↵-diagonal NSI parameter ✏µ⌧ is constrained
�0.20 < ✏µ⌧ < 0.07 (at 90% CL) from MINOS data in the framework of two flavour neutrino
oscillations [33,34]. It should be noted, though, that the derivation of these bounds (the SK
one in particular [32]) hinge upon certain assumptions. The primary theoretical assumption
relates to the simplification of the system onto a (hybrid) two-flavour scenario. Within the
SM paradigm, this approximation is expected to be a very good one. The situation changes
considerably, though, once NSI are introduced. As we shall see shortly, the major e↵ect of
NSI accrues through matter e↵ects (even in the limit of the ⌫e decoupling entirely). However,
there exists a nontrivial interplay between such e↵ects and the corresponding matter e↵ects
induced by canonical three-flavour oscillations. Consequently, approximations pertaining to
the neutrino mixing matrix can significantly alter conclusions reached about NSI. Similarly,
the very presence of NSI can leave its imprint in the determination of neutrino parameters. A
second set of imponderables relate to statistical and systematic uncertainties, including but
not limited to earth density and atmospheric neutrino profiles. Thus, it is quite conceivable
that the constraints quoted by the SK collaboration could be relaxed to a fair degree,
though perhaps not to the extent of those in Eq. (5). In view of this, and following several
other studies [35], we will use a value of |✏↵�| = 0.15 (for the parameters ✏µ⌧ , ✏eµ and ✏e⌧ )
in our oscillogram diagrams. This value is eminently in agreement with Eq. (5). Note,
though, that this choice is essentially to aid visual appreciation of the di↵erences in the
oscillogram structures wrought by NSI. Indeed, the experimental sensitivities that we shall
be deriving are comparable to (and often significantly better than) those achieved by the SK
collaboration. Furthermore, we shall not be taking recourse to two-flavour simplifications
to reach such sensitivities. Additionally, the allowed ranges of NSI parameters have been
recently extracted using global analysis of neutrino data in Ref. [36].

3 Neutrino oscillation probability in matter with NSI

The purpose of the analytic expressions presented here is to understand the features in
the probability in the presence of NSI. All the plots presented in this paper are obtained
numerically by solving the full three flavour neutrino propagation equations using the PREM
density profile of the Earth, and the latest values of the neutrino parameters as obtained
from global fits (see Table 1).

7The SK collaboration uses a di↵erent normalization (nd) while writing the e↵ective NSI parameter (see
Eq. (2)) and hence we need to multiply the bounds mentioned in Ref. [32] by a factor of 3.
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