Supernova Neutrinos, Proton Decay and Atmospheric Neutrinos at DUNE

Juergen Reichenbacher for the DUNE collaboration

WIN 2017 UC Irvine, 21-June-2017

The supernova neutrino signal

1.) Supernova Neutrinos with DUNE Liquid argon time projection chambers

- fine-grained trackers
- no Cherenkov threshold
- high v_e cross section

DUNE talk: Jianming Bian Next Gen LBNEs & Tech: T. Kutter July 21, 2017: groundbreaking @ SURF

— DUNE (USA) 40 kton

GLACIER (Europe) 100 kton

June 21, 2017

DUNE - J. Reichenbacher (SDSM&T)

Supernova signal in a liquid argon detector

Example of supernova burst signal in 34 kton of LAr

-> plenary talks: M. Nakahata & B. Dasgupta

arXiv:1307.7335

June 21, 2017

20 MeV v_e , 14.1 MeV e⁻, simple model based on R. Raghavan, PRD 34 (1986) 2088 Improved modeling based on ⁴⁰Ti (⁴⁰K mirror) β decay measurements in progress **Direct measurements (and theory) needed!**

June 21, 2017

MARLEY: Model of Argon Reaction Low-Energy Yields

- Goal: determine whether "every little thing gonna be all right" for SN neutrino physics in LArTPCs
- \bullet Event generator for SN ν on $^{\rm 40}{\rm Ar}$

• Current version focuses on generating $\nu_{\rm e} {\rm ArCC}$ events

R. Svoboda, S. Gardiner (-> talk), C. Grant & E. Pantic

Example neutron event (true trajectories)

- E_{ν} = 16.3 MeV
- e⁻ deposited 4.5 MeV
- No primary γ s from vertex
- ³⁹K deposited 68 keV
- n deposited 7.6 MeV (mostly from capture γ s)
- Total visible energy: 12.2 MeV
- Visible energy sphere radius:

1.44 m

 Neutrons bounce around for a long time!

-> need to control u/g neutron background!

1.) Important: Radiological Model and Inputs from Screening

\Rightarrow <u>Requirements on Radiopurity driven by intrinsic Ar-39 level</u> in LAr (1.01 Bq / kg)

(would require Manhattan-Project style effort to mitigate for DUNE)

- Radiological control is crucial for far detector!
- ⇒ alpha- and gamma-screening of radiologically critical detector components for far detector used as inputs for radiological model
- Full-blown radiological model is condensed into one LArSoft producer file and provides input for SNB, DAQ simulations, cosmogenics, atmospheric v's, ndk etc.

³⁹Ar background

Ar-39 + Rn-222 background study

-> Rn-222 ~ Ar-39

1) Surface α -Activity Screening of DUNE Photon Detectors

Quality control (QC) by α/β -screening with AlphaBACH at SDSMT:

Quality Assurance (QA) much less stringent than for dark matter experiments, but still 1000x below NRC swipe sample sensitivity (yet 1000x above AlphaBACH sensitivity)

DUNE - J. Reichenbacher (SDSM&T)

June 21, 2017

1) Detector Uniformity

DUNE/LBNF far detector single-phase Distribute flow to 4 locations (one injection pump at one end + manifold

- ⇒ ensure uniform detector response: purity and electron lifetime (employ purity monitors)
- ⇒ impact of complicated flow pattern checked with fluid dynamic simulation (employ RTDs)

June 21, 2017

Same supernova model, other future large detectors

- neutronization burst much more visible in LAr
- time profile varies by hierarchy, differently for different detectors
- ⇒ <u>We need LAr SNB detector!</u>

Grand Unified Theories predict the decay of protons and bound neutrons. The dominant proton decay mode in most supersymmetric GUTs is $p \to \overline{\nu}K^+$.

DUNE's golden proton decay mode!

- -> see talk: K.S. Babu (proton decay theory)
- -> see talk: M. Miura (proton decay searches)

-> see talk: R. N. Mohapatra (GUTs, Neutrinos and Flavor Symmetries) p -> v K⁺ in SUSY models connected to neutrino mixings and hence can test seesaw!

Proton Decay – DUNE Golden Mode

-> already doing a good job on K+ tracking efficiency (keep improving)

Partial lifetime sensitivity $p \rightarrow \overline{v} K^+$ at DUNE, for a 400 kton year exposure and at 90% confidence level, as a function of background rate and signal efficiency (compared to SK limit)

Muon-Induced Backgrounds to Nucleon Decay

Goal: Simulate primary muons in rock above Far Detector, reconstruct particles that deposit energy in detector active volume, classify and quantify events.

- Simulated 10⁸ muons (~20 years exposure)
- Applied basic selection cuts for vK⁺
 - No events pass all selection cuts in 20-yr sample
 - Study BG events that pass all-but-one cut (fiducial or ROI)

Muon-induced K⁰_L passing all cuts (but not in ROI)

3.) Atmospheric Neutrinos with DUNE

Upward-going multi-GeV neutrinos are sensitive to matter effects via MSW resonance:

- Can probe neutrino mass hierarchy, θ_{23} octant and δ_{CP} phase
- Test standard oscillation model over multiple oscillation wavelengths
- Atmospheric neutrino data can help resolve ambiguities that arise in beam-only oscillation analyses

June 21, 2017

Atmospheric Neutrino Azimuthal Angle Distributions

Goal: Provide an *in situ* measurement that demonstrates our ability to accurately determine neutrino direction.

3.) Atmospheric Neutrinos with DUNE

