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What 
Technique allowing redundancy for high precision calorimetry  

within Liquid Scintillator detectors

Why
Upcoming high-resolution spectral measurements of neutrino interactions

How
Exploit two independent energy estimators  

experiencing different systematic uncertainties 
 

(possibly implemented through independent detection systems)

Disclaimer: limited time ▶︎ illustration rather than full explanation 
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Motivation
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Calorimetry of (anti)neutrino interactions 
Example: θ13 experiments

Resolution dominated by photostatistics

σNST: residual issues in detector modeling   
after calibration (linearity, stability, uniformity)

Next generation detector:  
improve resolution (more than x2)

σNST no longer negligible

Understating systematics is pivotal σST ~ 7%     σNST ~  2% 

Double Chooz - Similar to other Exps
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 Two Calorimetry Observables in LS Detectors
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PHOTON COUNTINGCHARGE INTEGRATION

λ > 0.5

Different
Systematics

Single photoelectron 
threshold

PMT gain linearity
gain = gain(PE)?

PE/MeV

PE =

Mean PMT Illumination 
λ =⟨ N(PE) ⟩ / PMT

ENERGY LIGHTLS Detector

charge
gain

λ ≲ 0.5

PE = hit
PMT

DEPOSITION DETECTION

REDUNDANCY

PMT
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Calorimetry in Current LS Experiments
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Experiments typically implement one single observable
PARTLY BECAUSE

Deposited energy (signal signature) + detector geometry ▶︎ dynamic range

Why shall we go beyond this paradigm?

Both
observables

Only Charge  
Integration

DYNAMIC RANGE AT 1 MEV

DYB
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Calorimetry in Future LS Experiments 

6

KamLAND 1000 t
D. Chooz 30 t
RENO 16 t
Daya Bay 20 t

Borexino 300 t
JUNO 20000 t

6%/√E

8%/√E

5%/√E

DETECTOR
TARGET MASS

ENERGY
RESOLUTION

3%/√E

MUST BE LARGER

MUST BE MORE PRECISE

Sizable difference in collected light
detector center vs detector edge

Unprecedented light level
1200 pe/MeV

Both features 
• are highly expensive (civil engineering + photocathode density)
• result in extreme detector dynamic range

• reactor antineutrino detection yields λ ∈ [0.07,~50] in JUNO



Deal with the detection of 1200 wild photoelectrons… 
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JUNO Calorimetry 
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Redundancy in systematics evaluation is pivotal

1 MeV
Energy

Deposition

typical LS exp
σNST ~ 2%

Light is not enough

σNST needs to be controlled at better than 1% level



Double Calorimetry: born within JUNO
to better control / assess the resolution non-stochastic term
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Double Calorimetry in Action: Energy Reconstruction 
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E = f × PE
PE: raw detector responsef : calibration 

Detector 
Time dependent

Energy dependent

Position dependent

Stability

Uniformity

Linearity

ACCOUNTED  
FOR USING
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Double Calorimetry in Action: Energy Reconstruction 
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E = f × PE
PE: raw detector responsef : calibration 

Detector 
Time dependent

Energy dependent

Position dependent

Stability

Uniformity

Linearity

E [MeV] = f ABS x f U (r)  x f S (t) x f L (PE) x PE

ACCOUNTED  
FOR USING

Limited dynamic range
Nowadays σ(E)/E 
(eg θ13 experiments)

E [MeV] = f ABS, U, S, L (r, t, PE) × PE

EVALUATED INDEPENDENTLY 

Wide dynamic range
Demanding σ(E)/E

Correlation among f  terms might become relevant (degeneracy)
EXAMPLE ▶︎ ▶︎ ▶︎
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Correlation Among Calibration Terms (Illustration)
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Deploy 1MeV calibration source at different positions (simulation)
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TRUTH : “Genuine” detector non-uniformity (geometry + LS attenuation)

TRUTH
TRUTH
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Correlation Among Calibration Terms (Illustration)
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Residual charge non-linearity shows up as additional non-uniformity

RECO: Introducing a 1% bias for each detected pe 

RECO

RECO

TRUTH
TRUTH

Deploy 1MeV calibration source at different positions (simulation)
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Experimental Challenge
Understand the source of additional resolution (& distortion)

How to break down systematic uncertainty budget?  

Use response map derived at 1MeV

Reconstruct 2.2 MeV gamma line  
from n captures on H 
(uniformly distributed in the detector)

TRUTH

RECO

Actual resolution worse than
intrinsic resolution 

σ2NON-STOCH is dominant
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Double Calorimetry in JUNO (Large & Small PMTs)
18,000 PMTs (20” diameter)→ Large-PMT system (LPMT)
25,000 PMTs (3” diameter)→ Small-PMT system (SPMT)
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Double Calorimetry in JUNO
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SPMT in photon counting regime across all dynamic range (energy & position)

Small PMTs (SPMT)
3% photocoverage
50 PE/MeV
PE = hits

Large PMTs (LPMT)
75%  photocoverage

1200 PE/MeV
PE = charge / gain

CALIBRATION

DYB
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Breakdown of the Non-Stochastic Resolution Term
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Look at calibration data 
using SPMT
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RECO SPMT
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Breakdown of the Non-Stochastic Resolution Term

18

Radius [m]

N
(p

e)

100

110

120

130

140

150

160

Radius [m]
0 1 2 3 4 5 6 7 8 9 10

R
at

io

0.92
0.94
0.96
0.98

1

Look at calibration data 
using SPMT

Photon Counting Regime: 
Negligible charge non-linearity
Compared to LPMT

SPMT provide a good reference  
to understand LPMT response

IDEAL

RECO SPMT

RECO LPMT



M. Grassi WIN 2017

Breakdown of the Non-Stochastic Resolution Term
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IDEAL

RECO LPMT

RECO SPMT

SPMT: resolve otherwise unresolvable response degeneracy 

Look at calibration data 
using SPMT

Photon Counting Regime: 
Negligible charge non-linearity
Compared to LPMT

SPMT provide a good reference  
to understand LPMT response

Ratio LPMT/SPMT “     ”

Extra resolution due to
unaccounted charge non-linearity

Calibration Data
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Summary & Conclusions
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Redundancy: key ingredient to achieve high-precision calorimetry 

Break correlation among 
calibration terms

Reliable measurement of detector 
light non-linearity (LS quenching)

Three examples of  
Double Calorimetry in action

Detector uniformity map  
valid at different energies
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