Double Calorimetry in Liquid Scintillator Detectors

Marco Grassi APC - CNRS (Paris)

in collaboration with:

Stefano Dusini Anatael Cabrera Margherita Buizza Miao He Pedro Ochoa

What

Technique allowing redundancy for high precision calorimetry within Liquid Scintillator detectors

Why

Upcoming high-resolution spectral measurements of neutrino interactions

How

Exploit two independent energy estimators experiencing different systematic uncertainties

(possibly implemented through independent detection systems)

Disclaimer: limited time ▶ illustration rather than full explanation

Motivation

Calorimetry of (anti)neutrino interactions

Example: θ₁₃ experiments

$$\frac{G(E)}{E} = \sqrt{\frac{6stoch}{6stoch} + 6stoch}$$

Resolution dominated by photostatistics

ONST: residual issues in detector modeling after calibration (linearity, stability, uniformity)

Next generation detector: improve resolution (more than x2)

ONST no longer negligible

Understating systematics is pivotal

Two Calorimetry Observables in LS Detectors

LS Detector PE/MeV

LIGHT DETECTION

Mean PMT Illumination $\lambda = \langle N(PE) \rangle / PMT$

CHARGE INTEGRATION

PHOTON COUNTING

PMT gain linearity gain = gain(PE)?

Different Systematics

Single photoelectron threshold

REDUNDANCY

Calorimetry in Current LS Experiments

Experiments typically implement one single observable

PARTLY BECAUSE

Deposited energy (signal signature) + detector geometry > dynamic range

Why shall we go beyond this paradigm?

Calorimetry in Future LS Experiments

	DETECTOR ARGET MASS	ENERGY RESOLUTION	Must be Larger
KamLAND	1000 t	6%/√E	Sizable difference in collected light
D. Chooz	30 t		detector center vs detector edge
RENO	16 t	8%/√E	
Daya Bay	20 t		MUST BE MORE PRECISE
Borexino	300 t	5%/√E	Unprecedented light level
JUNO	20000 t	3%/√E	1200 pe/MeV

Both features

- are highly expensive (civil engineering + photocathode density)
- result in extreme detector dynamic range
 - reactor antineutrino detection yields λ ∈ [0.07,~50] in JUNO

JUNO Calorimetry

ONST needs to be controlled at better than 1% level Redundancy in systematics evaluation is pivotal

Double Calorimetry: born within JUNO to better control / assess the resolution non-stochastic term

Double Calorimetry in Action: Energy Reconstruction

$$E = \int \times PE$$

$$f: calibration$$

$$ACCOUNTED FOR USING$$

$$FOR USING$$

Double Calorimetry in Action: Energy Reconstruction

$$E = f \times PE$$

PE: raw detector response

Uniformity ← Position dependent

Stability ← Time dependent

Linearity ← Energy dependent

Limited dynamic range Nowadays $\sigma(E)/E$ (eg θ_{13} experiments)

$$E [MeV] = \int^{ABS} x \int^{U} (r) x \int^{S} (t) x \int^{L} (PE) x PE$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$EVALUATED INDEPENDENTLY$$

Wide dynamic range Demanding $\sigma(E)/E$

$$E[MeV] = \int ABS, U, S, L(r, t, PE) \times PE$$

Correlation among f terms might become relevant (degeneracy)

Correlation Among Calibration Terms (Illustration)

Deploy 1MeV calibration source at different positions (simulation)

TRUTH: "Genuine" detector non-uniformity (geometry + LS attenuation)

Correlation Among Calibration Terms (Illustration)

Deploy 1MeV calibration source at different positions (simulation)

RECO: Introducing a 1% bias for each detected pe

Residual charge non-linearity shows up as additional non-uniformity

Correlation Outcome

Use response map derived at 1MeV

Reconstruct 2.2 MeV gamma line from n captures on H

(uniformly distributed in the detector)

Actual resolution worse than intrinsic resolution

σ²NON-STOCH is dominant

Experimental Challenge

Understand the source of additional resolution (& distortion)

How to break down systematic uncertainty budget?

Double Calorimetry in JUNO

Large PMTs (LPMT)
75% photocoverage
1200 PE/MeV
PE = charge / gain

CALIBRATION
3% photocoverage
50 PE/MeV
PE = hits

SPMT in photon counting regime across all dynamic range (energy & position)

Breakdown of the Non-Stochastic Resolution Term

Look at calibration data using SPMT

Breakdown of the Non-Stochastic Resolution Term

Look at calibration data using SPMT

Photon Counting Regime:
Negligible charge non-linearity
Compared to LPMT

SPMT provide a good reference to understand LPMT response

Breakdown of the Non-Stochastic Resolution Term

Look at calibration data using SPMT

Photon Counting Regime:
Negligible charge non-linearity
Compared to LPMT

SPMT provide a good reference to understand LPMT response

Ratio LPMT/SPMT " O "

Extra resolution due to unaccounted charge non-linearity

SPMT: resolve otherwise unresolvable response degeneracy

Summary & Conclusions

Three examples of Double Calorimetry in action

Detector uniformity map valid at different energies

Reliable measurement of detector light non-linearity (LS quenching)

Break correlation among calibration terms

Redundancy: key ingredient to achieve high-precision calorimetry