The Muon g-2/EDM Experiment at J-PARC

Junji Tojo Kyushu University for the J-PARC E34 Collaboration

The 26th International Workshop on Weak Interaction and Neutrinos

20th June 2017

The J-PARC g-2/EDM Collaboration

\cdot Institutions

- 9 countries
 - · Canada, China, Czech, France, Japan, Korea, Russia, UK, US
- 49 institutions

Collaborators

- 72 in Proposal (2009)
- 92 in Conceptual Design Report (2011)
- · 137 in Technical Design Report (2015)
- · 144 in Technical Design Report rev. (2016)

Brief History

Date	Event
Jul 2009	Letter of Intent submitted to PAC8
Jan 2010	Proposal submitted to PAC9
Jan 2012	Conceptual Design Report submitted to PAC13 Milestones defined
Jul 2012	Stage-1 status recommended by PAC15 Stage-1granted by the KEK IPNS director
May 2015	Technical Design Report submitted to PAC and
Oct 2016	Revised TDR submitted to PAC and FRC
Nov 2016	Focused review in the revised TDR

Next step : Revised TDR and request for Stage-2 status

Neutrino Beams

(to Kamioka)

J-PARC Facility (KEK/JAEA)

u CLFV

Mu HF splitting

J-PARC E34 : µ g-2/EDM

DeeMe

MuSEUM

Materials and Life Experimental Facility

Tel al an

Linac

Synchrotron

CY2007 Beams JFY2008 Beams JFY2009 Beams Bird's eve photo in January of 2008

Main Ring

Synchrotron

COMET : µ CLFV

Slow-extra. Experimental Facility

Muon Dipole Moment

Anomalous magnetic moment a_µ

$$\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{s}$$
$$a_{\mu} = \frac{g-2}{2}$$

- CP-even
- Contributions from QED, EW, QCD and BSM

Muon Dipole Moment

- Electric dipole moment (EDM) η_{μ}

$$\vec{d} = \eta_{\mu} \left(\frac{e}{2mc}\right) \vec{s}$$

CP-odd (T-odd)

•

•

Assuming the CTP invariance
CP violation in the lepton sector

Muon Dipole Moment

The results by BNL E821 is at the frontier now.

- g-2 : 0.54 ppm, a famous 3.3 σ deviation from the SM
 - Can be a window to BSM, Tension in global analyses
- EDM : < 10⁻¹⁹ e cm

•

•

• Needs much better precision

The next generation experiments with new technologies have been hoped for and proposed.

Measurement Principle

• Spin precession in a uniform B-field

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Two alternative methods

•

•

•

•

- Magic momentum : BNL E821 and FNAL E989
 - Eliminate the 2nd term by setting p=3.09 GeV/c (γ =29.3) Can use E-field for beam focusing
- · Zero E-field : J-PARC E34
 - Separation of a_μ and η_μ
 - A new technology is necessary.
 - Muon beam w/o E-focusing
 - ⇒ Ultra-cold muon beam

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

Proposed Site at J-PARC

MLF (Material and Life Science Facility)

H-Line Construction

Completion of the shielding blocks

Ultra-Cold Muons

Ultra-cold muon is one of the most important technology to establish J-PARC E34.

• Ultra-small transverse dispersion : $\Delta p_T/p_T < 10^{-5}$

•

Cooling with muonium production and laser ionization

Ultra-Cold Muons

Mu production target (Laser-ablated silica aerogel) Further Improvement is expected with new target samples.

Muon Acceleration Development

Total ~ 40m

- Multiple-structures
 - Covering a wide range of β
- Low current & low duty
 - · Intensity : $10^6 \mu/sec$
 - Repetition : 25 Hz
 - Pulse length : 10 sec
- Fast acceleration
 - Minimize the decay loss

Muon Acceleration Development

Muon Acceleration Development

Emittance Growth Simulation

Total ~ 40m

Matching btw DAW and DLS leads to a better emittance. ²⁰

Muon Beam Injection and Storage

Horizontal injection + kicker (BNL E821, FNAL E989)

3D spiral injection + kicker (J-PARC E34)

Injection efficiency : 3-5%(*)

(*) PRD73,072003 (2006)

Injection efficiency : ~90%

NIM A 832, 51 (2016) by H. linuma et al.

Spiral Injection Test

- Proof-of-principle injection test using electrons.
- Successfully observed a spiral track

Beam

emittance

B-Field Shimming

B-Field Shimming

51.0000, 216.000 scale: 1.00000, 1.00000

Muon Storage Magnet and Detector

Positron Tracking Detector

Detector

Silicon strip tracker with a "vane" structure

Detector

Vane

•

- Two single-sided p-on-n sensors
 - Axial/radial strips
 - · 190 μ m strip pitch
 - 1,024 strips/sensor
- ASIC readout outside the tracking volume
 - Binary readout with ToT
- \cdot The entire detector
 - 768 sensors
 - 786,432 channels

Half vane

Detector Development

Full-scale sensor

ASIC prototype

Prototype development

Evaluation

Expected g-2/EDM Measurement

- Separation of g-2 and EDM
- Simultaneous measurements of both g-2 and EDM

Summary

 The muon g-2/EDM experiment at J-PARC uses a ultra-cold muon beam to establish a new principle of the measurement with E=0.

· The targeted goal

- · g-2 : 0.37 ppm in Phase-1, 0.1 ppm at Phase-2
- EDM : $1.3x10^{-21}$ e cm

 The R&Ds in all the area are progressing very well towards the readiness for the construction.

 The independent measurement of g-2 together with EDM could contribute to opening a window to new physics.