

Reactor Neutrino Experiments and Anomalies

Jun Cao

Institute of High Energy Physics

Content

- Reactor neutrino flux and spectrum
 - ➡ Rate anomaly
 - ⇒ Spectrum anomaly
 - ⇒ More?
- Measuring θ_{13} and Δm^2_{ee}
 - ➡ Daya Bay, Double Chooz, RENO
- JUNO status
 - ⇒ Mass hierarchy & precision measurement of θ_{12} , Δm_{21}^2 and Δm_{31}^2 with reactor

Reactor Neutrinos

Reactor Neutrino Flux

neutrinos/MeV/fission

- Neutrinos from subsequent β -decays of fission fragments.
- **PWR (Pressurized Water Reactor) as example.** (3-5)% U-235 enrichment. Other is U-238.

Time since 1-Jan-2000 (day)

$$S(E_{v}) = \sum_{i}^{isotopes} f_{i}S_{i}(E_{v})$$

Spectra of Isotopes

- Ab initio: Nuclear database, Σ fragments, Σ chains, Σ branches → 10% uncertainty (e.g. Vogel et al., PRC24, 1543 (1981)).
- **Conversion:** ILL measured the β -spectra \rightarrow convert to neutrino spectra
 - ➡ ILL spectra: Use spectra of 30 virtual (allowed) decays, fit amplitude and endpoints (ILL-Vogel spectra)
 - \Rightarrow Mueller: 90% ab initio + 10% fit \rightarrow rate anomaly
 - ⇒ **Huber:** fit w/ improved nuclear effects (Huber-Mueller spectra)

Reactor Anomaly (Rate)

- ILL spectra agree w/ data
- 2011, Huber-Mueller spectra higher than data by 6%
- Sterile neutrino?

Phys.Rev. D83 (2011) 073006

Daya Bay, Double Chooz, RENO for θ_{13}

Very Short Baseline Exps.

- Different technologies: (Gd, Li, B) (seg.)(movable)(2 det.)
- Most have sensitivity 0.02~0.03 @ Δ m~1eV² @90%CL

Experiment	Reactor	Overburden	Detection	Segmentation	Optical	Particle ID
	Power/Fuel	(mwe)	Material		Readout	Capability
DANSS	3000 MW	~50	Inhomogeneous	2D, ~5mm	WLS fibers.	Topology only
(Russia)	📱 LEU fuel		PS & Gd sheets			
NEOS	2800 MW	~20	Homogeneous	none	Direct double	recoil PSD only
(South Korea)	LEU fuel		Gd-doped LS		ended PMT	
nuLat 💦	40 MW	few	Homogeneous	Quasi-3D, 5cm,	Direct PMT	Topology, recoil
(USA)	²³⁵ U fuel		[▶] Li doped PS	3-axis Opt. Latt		& capture PSD
Neutrino4	100 MW	~10	Homogeneous	2D, ~10cm	Direct single	Topology only
(Russia)	²³⁵ U fuel		Gd-doped LS		ended PMT	
PROSPECT	85 MW	few	Homogeneous	2D, 15cm	Direct double	Topology, recoil
(USA)	²³⁵ U fuel		^b Li-doped LS		ended PMT	& capture PSD
SoLid	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm	WLS fibers	topology,
(UK Fr Bel US)	²³⁵ U fuel		°LiZnS & PS	multiplex		capture PSD
Chandler	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm,	Direct PMT/	topology,
(USA)	²³⁵ U fuel		°LiZnS & PS	2-axis Opt. Latt	WLS Scint.	capture PSD
Stereo	57 MW	~15	Homogeneous	1D, 25cm	Direct single	recoil PSD
(France)	²³⁵ U fuel		Gd-doped LS		ended PMT	

Detecting Reactor Antineutrino

 $E(\bar{v}_e) = E_{\text{prompt}} + Q - m_e$ ~ $E_{\text{prompt}} + 0.8 \text{ MeV}$

Daya Bay Absolute Rate Measurement

Chin. Phys. C41, 013002 (2017)

- ⇒ Data/(Huber+Mueller): 0
 ⇒ Past global average: 0
 ⇒ Data/(ILL+Vogel): 0
 - $\begin{array}{c} 0.946 \pm 0.020 \\ 0.942 \pm 0.009 \\ 0.992 \pm 0.021 \end{array}$

contribution	uncertainty
statistics	0.1%
oscillation	0.1%
reactor	0.9%
detection efficiency	1.93%
total	2.1%

Special calibration in Jan. 2017

Stay tuned

Daya Bay Fuel Evolution

- Combined fit for major fission isotopes ²³⁵U and ²³⁹Pu
- σ235 is 7.8% lower than Huber-Mueller model (2.7% meas. uncertainty)
- σ239 is consistent with the prediction (6% meas. uncertainty)
- 2.8σ disfavor equal deficit (H-M model & sterile hypothesis)

PRL118, 251801 (2017) Published June 19, 2017

Talk by David Martinez in Neutrino session

Reactor Anomaly (Spectrum)

- 5 MeV Bump
- Not due to energy non-linearity
- Not due to sterile v
- Possibly due to forbidden decays (PRL112: 2021501; PRL114:012502)

Talk by T. Sogo-Bezerra in neutrino session

DC, JHEP 1410 (2014) 086

RENO:arXiv:1610.04326

Chin. Phys. C41, 013002 (2017)

Measuring the spectrum

Unfolding the reactor neutrino spectrum

- \Rightarrow Between 1.5 and 7MeV: 1.0% at 3.5 MeV, 6.7% at 7 MeV
- \Rightarrow Above 7 MeV it is larger than 10%.

- New prediction besides *ab initio* method and conversion method
- ♦ W/ the direct measurement, spectra uncertainty comes mainly from energy non-linearity uncertainty (do not double counting): 1% energy scale → 10% uncertainty in spectrum.
- ♦ Aim at 1% for JUNO → next page

Precision Spectrum with Gas TPC

- How to reach 1% spectrum uncertainty?
- Improving Daya Bay (Stay tuned)
 - ➡ Electronics non-linearity
 - 192 channels Flash ADC for AD1. Data taking completed.
 - ➡ Liquid scintillator non-linearity
 - Replaced LS in AD1 for JUNO R&D
 → Consequence: Daya Bay from 8 AD to 7 AD since Dec. 2016
 - Testing detector responses with 13 different LS configurations (PPO from 0.5g/L to 4g/L, bis-MSB from 0.1-15 mg/L)

→ Building precision Monte Carlo

- ➡ Relative meas. to cancel non-linearity btwn Daya Bay and JUNO
- Other experiments, like PROSPECT (4.5% energy resolution)
- Gas TPC detector at ~20 m from a reactor (Prototyping at IHEP)
 - → v-e scattering
 - ➡ High energy resolution (1%/sqrt(E), Daya Bay 8%, JUNO 3%)
 - \Rightarrow Other motivations: θw , abnormal magnetic moment (to 10^{-12})

Precision Measurement at Daya Bay

Global Comparison

- DYB: running to 2020, 3% precision (1.5x stat. in 2018 summer)
- RENO: operation funding secured until 2019.2
- Double Chooz: at least Jan. 2018

The JUNO Experiment

 Jiangmen Underground Neutrino Observatory, a multiple-purpose neutrino experiment, approved in Feb. 2013. ~ 300 M\$. Aiming at data taking in 2020.

http://juno.ihep.ac.cn

Talks by A. Cabrera (general), H. Li (SN), M. Grassi (sPMT) in neutrino session.

- 20 kton LS detector
 - **3% energy resolution**
- 700 m underground
- Rich physics possibilities
 - Reactor neutrino for Mass hierarchy and precision measurement of oscillation parameters
 - ⇒ Supernovae, DSNB
 - ➡ Geo-neutrino
 - Solar neutrino
 - → Proton decay
 - ⇒ Exotic searches

Sensitivity w/ Reactor nu

	KamLAND	BOREXINO	JUNO
mass	1 kt	0.5 kt	20 kt
Energy Resolution	6%/√E	5%∕√ <i>E</i>	3%∕√ <i>E</i>
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

	Statistics	w/ sys.
$\sin^2 \theta_{12}$	0.54%	0.67%
Δm_{21}^2	0.24%	0.59%
Δm^2_{ee}	0.27%	0.44%

JUNO Location/Collaboration

71 Institutions, 533 collaborators

China (32), Thailand (3), Pakistan, Armenia

- Italy (8), Germany (7), France
 (6), Russia (3), Belgium, Czech,
 Finland, Slovakia
 - Brazil (2), Chile (2), USA (2)

JUNO Detector

Pool ID:43.5m

JUNO Progress and Schedule

Ground breaking in Jan. 2015

- ⇒ slope tunnel done (1265 m)
- ⇒ vertical shaft done (575 m)
- ⇒ Delayed by unexpected water Schedule:
- Detector assembly & installation: 2018-2019
- ⇒ Filling & data taking: 2020
- ⇒ Delayed by ~1 year

Central Detector + Muon Detector

- Acrylic sphere: ID35.4m, thickness: 120mm >200 pieces of panels bonded on site. 600 t
- Stainless steel: ID40.1m, OD41.1m, divided into 30 longitudes and 23 layers, 600 t

Bonding

- Water cherenkov detector
 ~2000 20" PMT
 35 kton ultrapure water
- Top tracker
 Re-using the OPERA's Target
 Tracker. Arrived in China

LS Pilot plant

- Purified 20 ton LAB to test the overall design of the purification system at Daya Bay. Replaced the target LS in one detector
 - ⇒ Optimization of recipe, Study of radioactivity background
- Target:
 - → Optical : >20m A.L @430nm
 - ⇒ Radio-purity: 10⁻¹⁵ g/g (U, Th)

Distillation system

Steam stripping system

Water extraction

Ultra-pure nitrogen

LAB storage tank

Al₂O₃ column

20-inch PMT

- **Contracts were signed in 2015**
 - ⇒ 15k MCP-PMT (75%) from NNVT
 - ⇒ 5k Dynode (25%) from Hamamatsu

Characteristics	unit	MCP-PMT (NNVT)	R12860 (Hamamatsu)
Detection Efficiency (QE*CE*area)	%	27%, > 24%	27%, > 24%
P/V of SPE		3.5, > 2.8	3, > 2.5
TTS on the top point	ns	~12, < 15	2.7, < 3.5
Rise time/ Fall time	ns	R~2, F~12	R~5, F~9
Anode Dark Count	Hz	20K, < 30K	10K, < 50K
After Pulse Rate	%	1, <2	10, < 15
		238U:50	238U:400
Radioactivity of glass	ppb	232Th:50	232Th:400
		40K: 20	40K: 40

Small PMT

- 25,000 3-inch PMTs, contracted to HZC (China)
- Work together with the 20-in PMT as a double calorimetry
 - ➡ Increase photon statistics by 3%
 - Measure energy via "photon counting", control systematics
 - muon tracking, supernova detection ...

Summary

- Ultimate precision of $\sin^2 2\theta_{13}$ will reach ~3%.
- Flux and spectrum anomalies are also interesting.
 - ➡ Fuel evolution shows deficit from U-235
- Systematics improvements of DYB expected with special calibration, FADC, LS replacement.
- Major progresses in JUNO construction
 - ⇒ 35.4-meter acrylic sphere
 - → Super-transparent liquid scintillator (>20m)
 - ➡ High DE PMTs (27%)

Thanks !

