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Are we ready for the next supernova? 
Review of experimental facilities 
 
Talk by Prof. Masayuki Nakahata 
See also recent review by Mirizzi, Tamborra, Janka, Scholberg (2016) 

This talk is mainly about the progress in neutrino theory 



What we know 
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Average Neutrino Energy = 12 MeV +/- 10% 
Total Energy in anti-nue = 5 x 1052 erg +50% - 20% 

Review by Vissanni (2014) 



SUPERNOVA physics 
 



SN Theory 

Image:Janka 



Georg Raffelt, MPI Physics, Munich Massive Neutrinos, NTU, Singapore, 9–13 Feb 2015 

Shock Revival by Neutrinos 

Georg Raffelt, MPI Physics, Munich ISOUPS, Asilomar, 24–27 May 2013 

S 

Si 

Si 

O 

Shock 
wave 

PNS 

Stalled shock wave must 
receive energy to start 
re-expansion against 
ram pressure of 
infalling stellar core 
 
Shock can receive 
fresh energy from 
neutrinos! 
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Neutrino Mechanism 
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Image: Raffelt 



Georg Raffelt, MPI Physics, Munich Massive Neutrinos, NTU, Singapore, 9–13 Feb 2015 

Delayed (Neutrino-Driven) Explosion 

Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys. (1982) 
Bethe & Wilson, ApJ 295 (1985) 14 

Delayed Explosion 
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Pre-explosion 
Collapse 

Post-bounce Stall 
Accretion 

Explosion 
Cooling 

Bethe & Wilson (1985) 



3D Explosions 
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Georg Raffelt, MPI Physics, Munich Massive Neutrinos, NTU, Singapore, 9–13 Feb 2015 

First Exploding 3D Simulation (9.6 M⊙ Garching) 

Tobias Melson, Hans-Thomas Janka & Andreas Marek, arXiv:1501.01961 

Melson et al (2015) 



Failed SN 
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Ott and O’Connor (2011) 
Horiuchi et al (2014) … 



The Road Ahead 
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•  Systematic 3D simulations and code-comparisons 
•  Full momentum-space of neutrinos 
•  Oscillations? (or other “exotic” physics) 
 
 



Luminosity and Temperature 
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Georg Raffelt, MPI Physics, Munich Massive Neutrinos, NTU, Singapore, 9–13 Feb 2015 

Three Phases of Neutrino Emission 

• Shock breakout 
• De-leptonization of 
   outer core layers 

• Shock stalls  ~ 150 km 
• Neutrinos powered by 
   infalling matter 

Cooling on neutrino 
diffusion time scale 

Spherically symmetric Garching model (25 M⊙) with Boltzmann neutrino transport 

Explosion 
triggered 

Garching group simulation of a 27 solar mass SN in 1d 



Neutrino physics 
 



Formalism 
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QFT 
  -> Boltzmann Eq. 
      -> Vlasov Eq. 

Raffelt and Sigl 
Pehlivan, Balantekin Kajino (2011) 
Vlasenko, Fuller, Cirilgliano (2013,2014) 
Vaanaanen and Volpe (2014), Serrau and Volpe (2014) 
Kartavtsev, Raffelt, Vogel (2015) 
 

Helicity flipping? 

Magnetic field due to flow of matter? 

Mean field? 
Collisions end before oscillations start 

Approximations of  convenience 



Oscillation Framework 
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MSW effect depends on 
ordinary matter density L, 
i.e. mainly electron 
density 

 

Vacuum oscillations 
•  M is neutrino mass matrix 
•  Overall minus sign for 
antineutrinos 

 
Nonlinear nu-nu effects are important when nu-nu interaction frequency 
exceeds the typical vacuum oscillation frequency 
 

These interactions give rise to “Collective” flavor conversions 

Nonlinear Effects 
depends on the 

neutrino density ρ



MSW Effects 
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NH IH 

L resonance : ν1  ν2 
(Δmsol

2 , θ12) at 101 – 102 g/cs  
Always in neutrinos 

H resonance : ν1/ν2       ν3 

(Δmatm
2 , θ13) at 103 – 104 g/cc 

In neutrinos for NH and in 
antineutrinos for IH.  

These effects occur at r~500 km or more 

Dighe and Smirnov 



Neutrino-Induced Potential 
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where 

Two neutrinos forward-scattering off each-other can exchange flavor 

Pantaleone (1992) 



Many-Body Physics 
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•  Anisotropic, nonlinear quantum coupling of 
all neutrino flavor evolution histories 

Must!solve!many!millions!of!coupled,!nonlinear!parBal!differenBal!equaBons!!!!

Image: Duan 

Flavor histories of all neutrinos get coupled 



Collective Effects 
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See review by Duan, Fuller, Carlson, and Qian 
Duan, Fuller, Carlson, and Qian (2005-06) 



Many Interesting Effects 

19 June at WIN 2017, Irvine Basudeb Dasgupta, TIFR Mumbai 20 



Lot of work in 2005-2010 
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More than 100 papers on collective effects by:  
Abazajian, Adams, Balantekin, Banerjee, Beacom, Bell, Blennow, 
Carlson, Capozzi, Chakraborty, Cherry, Choubey, Dasgupta, 
DeGouvea, Dighe, Dolgov, Duan, Esteban-Pretel, Fogli, Friedland, Fuller, 
Gava, Giles, Hannestad, Hansen, Izaguirre, Kneller, Kostelecky, Lisi, 
Lunardini, Marrone, McLaughlin, Mirizzi, Pantaleone, Pastor, Pehlivan, 
Qian, Raffelt, Samuel, Sarikas, Serpico, Semikoz, Seunarian, Shalgar, 
Sigl, Smirnov, Stodolsky, Tomas, Vogel, Volpe, Wong...(and you?)… 

 

All these effects take place at r~200 km 



Linear Stability Analysis 
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5

FIG. 1. Schematic geometry of the model and flavor-dependent zenith-angle distributions of neu-
trino fluxes. The 3 ellipses are schematic polar plots of the normalized angular distributions of the
⌫
e

(blue), ⌫̄
e

(red), and ⌫
x

(green) fluxes at the point where the arrows originate.

Interestingly, a major simplification suggests itself if one is interested in studying flavor
conversions only at small distances from the SN core. Most of the neutrinos are emitted
around a radius O(10) km from the center of the SN. For phenomena that take place very
close to this emission region, the curvature of the neutrinosphere is not relevant. We therefore
model the source region as a di↵use flat infinite plane, as shown in Fig. 1.

The neutrinos are conveniently labelled by !, v
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, and', that define the Cartesian com-
ponents of the momenta
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where v
z

= cos# is the component of the neutrino velocity along the z-axis, and # and ' the
zenith and azimuthal angles, respectively. Note that v

z

can take negative values, i.e., the
zenith angle # can take values between 0 and ⇡, not merely up to ⇡/2 as usually taken in
the “bulb” model, representing neutrinos with trajectories that range from radially outward
to radially inward into the star.

The state of the neutrino population can then be represented as
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Off-diagonal part of density matrix = Not flavor eigenstate 

Look at just the growth of this off-diagonal part 

Banerjee, Dighe, and Raffelt (2010) 



Breaking Spacetime Symmetries 
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i@r ! i(@t + v ·r)

•  Solution can depend on time 
•  Solution can depend on angular coordinates even 

if the source is approximately spherical 

Think of the off-diagonal component as a field over x and t 

S(t, x) ! Q(!, k)



Inhomogeneity 

19 June at WIN 2017, Irvine Basudeb Dasgupta, TIFR Mumbai 24 

Small inhomogeneities grow larger 
Mirizzi, Mangano, Saviano (2014) 
Duan and Shalgar (2015) 



Nonstationarity 
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Figure 3. Amplitudes of non stationary flavor conversions, Aeµ, as a function of the distance from
the neutrino source, z, and of the Fourier mode with index np, for ⌧� = 1 (left panel), 30 (middle
panel) and 10 (right panel) respectively. The closer is A

eµ to 0 (red color in the plot), the stronger
are the flavor conversions.
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Figure 4. Comparison linear vs nonlinear growth of Aeµ for di↵erent Fourier modes for ⌧� = 1 (left
panel), 30 (middle panel) and 10 (right panel) respectively.

In Fig. 4, we show that the above observations are justified by comparing the results
of the nonlinear computation (continuous curves) with the predictions of linearized stability
analysis (dashed curves) for the amplitudes A

eµ of specific n

p

modes (n
p

= 0, 50, and 90).
The key points to be noted are

• In the case of ⌧
�

= 1, the mode at n

p

= 90 is the most unstable and grows by ⇠ 10
orders of magnitude till z ' 6. In the same range the mode at n

p

= 50 grows by only
2 orders of magnitude, while the n

p

= 0 mode is stable. Till this distance from the
source there is perfect agreement between the non-linear and the linear evolution for
these three modes.

At larger z when the mode with n

p

= 90 has A

eµ ' �1. Its evolution becomes non-
linear and produces significant deviations with respect to the linear case due to the
interactions of di↵erent Fourier modes. In particular, the growth of the n

p

= 90 mode
slows down with respect to the linear prediction and instead the mode at n

p

= 50 has
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Instability starts as a small pulsating seed, and cascades 
down to a large steady instability 

ti
m

e 

Duan and Abbar (2015) 
Dasgupta and Mirizzi (2015) 
Capozzi, Dasgupta, Mirizzi (2016) 



Fast Conversion 
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Neutrinos change flavor within a few cm or at most 
a meter from their emission region because of 
nontrivial angular distribution of neutrinos 

Emphasized since 2005 by Ray Sawyer, but clearly 
understood only in the past few years 

Several papers by R. Sawyer (2005, 2008, 2015) 



Why Fast Conversion? 5

FIG. 1. Schematic geometry of the model and flavor-dependent zenith-angle distributions of neu-
trino fluxes. The 3 ellipses are schematic polar plots of the normalized angular distributions of the
⌫
e

(blue), ⌫̄
e

(red), and ⌫
x

(green) fluxes at the point where the arrows originate.

Interestingly, a major simplification suggests itself if one is interested in studying flavor
conversions only at small distances from the SN core. Most of the neutrinos are emitted
around a radius O(10) km from the center of the SN. For phenomena that take place very
close to this emission region, the curvature of the neutrinosphere is not relevant. We therefore
model the source region as a di↵use flat infinite plane, as shown in Fig. 1.
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= cos# is the component of the neutrino velocity along the z-axis, and # and ' the
zenith and azimuthal angles, respectively. Note that v

z

can take negative values, i.e., the
zenith angle # can take values between 0 and ⇡, not merely up to ⇡/2 as usually taken in
the “bulb” model, representing neutrinos with trajectories that range from radially outward
to radially inward into the star.
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Crossing and Back-flux 
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FIG. 2. Sketches of the schematic zenith angle distributions of ⌫
e

(blue) and ⌫̄
e

(red), used for
the calculations in this section. The left panel shows a spectrum that corresponds to Eq. (9) with
no ingoing ⌫

e

or ⌫̄
e

, while the right panel shows a spectrum with ingoing ⌫
e

and ⌫̄
e

as in Eq. (24).
The ⌫

e

and ⌫̄
e

have a flux ratio 1 + a, i.e., more ⌫
e

than ⌫̄
e

when a > 0, and the ⌫̄
e

have a more
forward-peaked distribution, controlled by the parameter b which we always choose to be larger
than the min(v

z

) for ⌫
e

.

spectrum is independent of '. However, we shall find that this azimuthal symmetry often
gets spontaneously broken. Most importantly, however, the zenith angle distributions for the
neutrinos and antineutrinos are not the same. While neutrinos are emitted over the entire
forward hemisphere (0  v

z

 1), the antineutrinos are contained in a narrower forward
cone b  v

z

 1, with b > 0. As long as 1/(1 � b) > 1 + a, there is a crossing of the
two flux-weighted angular spectra. This kind of a “non-trivial” flavor-dependent angular
distribution is believed to be be crucial for fast conversion.

We will also investigate the impact of extending the range of v
z

to negative values, i.e.,
(�1  v

z

 1) for neutrinos and with b > �1, as shown in the right panel of Fig. 2, to
understand the role of inward going neutrinos and antineutrinos. However, we limit our
focus to physically motivated spectra such that ⌫

e

have larger fluxes and wider distributions
in the zenith angle, compared to ⌫̄

e

.

A. Stationary Solutions with Evolution in Space

We begin by looking for a steady state or stationary solution, i.e., the density matrices do
not change with time. In that case it is appropriate to drop the time-derivative in Eq. (8),
and the eigenvalue equation for S = Qe

�i⌦z becomes
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where we have defined the integrals over the spectrum,
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FIG. 4. Instability rates for di↵erent values of a and b, for evolution in time, without including
inward going modes (left panel) and including inward going modes (right panel). These instabilities
are azimuthally asymmetric, and we found no instabilities if the azimuthal symmetry were to be
exact. There is no dependence on �.

same eigenvalue equation for Q as in Eq. (15), but with the integrals I↵,�
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replaced by a new
family of integrals
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which di↵er by the replacement v
z

⌦ ! ⌦ in the denominator of the integrand of I↵,�
m,n

.
For a spectrum which is independent of ', Eq. (15) simplifies as before. The upper

block gives the azimuthally symmetric solution whereas the lower block gives the azimuthal
symmetry breaking solution. The eigenvalues for the azimuthally symmetric instabilities are
given by

(J0,0 � 1) (J2,0 + 1) � (J1,0)
2 = 0 , (22)

while for the azimuthally non-symmetric instabilities one has

✓
J0,2

2
+ 1

◆
= 0 . (23)

An important fact here is that � does not a↵ect the temporal stability in any crucial
manner. If there is an unstable solution for � = 0, one will find an unstable solution with
the same imaginary part for any other value of � by simply shifting the real part of ⌦, i.e.,
by shifting ⌦ ! ⌦ + �, as is apparent from Eq. (21), which is the only manner in which �

enters our equations.
In Fig. 4 (left panel) we show the instability rates for evolution in time, without including

inward going modes, i.e., g
!,v

z

,'

is given by Eq. (9). It is apparent that fast instabilities,
which are azimuthal symmetry breaking solutions to Eq. (23), exist only for small values of
a and large values of b. There is no dependence on �, which can be absorbed into the real
part of ⌦.

Stronger Instability 

Chakraborty, Hansen, Izagguire, Raffelt (2016) 
Dasgupta, Mirizzi, Sen (2016) 

Talk by Mirizzi 



Dispersion Relations 
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Some combinations of  

(!, k)

not allowed to propagate 

Are these all instabilities? 

Izagguire, Raffelt, Tambora (2016) 



Instability Theory 
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FIG. 10: Two-beams model: Absolute instability in the k-plane, for the same two-mode parameters as in Fig. 8. Nearly vertical
and solid lines indicate the two roots K±(!) (distinguished by color) of the dispersion relation for fixed Re(!). Nearly horizontal
and dashed lines indicate isocontours of Im(!). Lowering Im(!) eventually leads to a pinching of the two roots, denoted by the
dot.

From Eq. (63) one obtains as dispersion relation

!

2

c̄

2
� k

2 = m

2
c̄

2
. (65)

If m

2
> 0, this quantity plays the role of a mass term, then Eq. (65) is the dispersion relation of a particle, having a

gap in !. From the dispersion relation, one realizes that if !

2
> m

2
c̄

4, Eq. (63) would have oscillatory waves as the
solution, while if ! < m

2
c̄

4 it would represent damped oscillatory waves. This is consistent with what found for the
in the damped case in the previous Section for two counter-propagating modes with " > 0.

If we now move to the case of m

2
< 0, Eq. (63) would represent a Klein-Gordon equation with imaginary mass.

In this case the dispersion relation of Eq. (65), with a gap in k, would be the one expected for “tachyons” [58, 59].
From this dispersion relation if k

2
> m

2
c̄

2 one would expect normal oscillatory motion. Conversely, for k

2
< m

2
c̄

2

we would have an exponential growing solution. It is intriguing to realize that the absolute instability found for two
counter-propagating modes with " < 0 is of a “tachyonic” type.

C. Numerical Results

In order to illustrate the predictions of the stability analysis for the four cases discussed in the previous Sections,
we work out representative numerical solutions of Eq. (44). We assume a length interval z 2 [0, L]. In the following
we will work in the units in which the neutrino potential in Eq. (9) is µ = 1. Therefore times and length are expressed
in units of µ

�1. Moreover, we will assume O(1) initial values for f1 and f2, since in the linear regime these are just
arbitrary normalization factors.

When v1v2 > 0 we assume that the two modes are emitted at z = 0. Conversely when v1v2 < 0 we assume that
the mode with v1 > 0 is emitted at z = 0, while the mode with v2 < 0 is emitted at z = L.

At first, we look for plane-wave solutions, given by Eq. (45). We assume the same numerical parameters as for the
four cases in Sec. V A. In Fig. 11 we plot the orbits of the solution (f1, f2) as a function of time t at some fixed z

Detailed understanding of the complex analytic structure 
of poles of the dispersion relation gives the instabilities 

Capozzi, Dasgupta, Lisi, Marrone, Mirizzi (2017)  



Work in Progress 
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Should we worry about fast conversions impacting 
the SN explosion process itself?  
Probably yes. 
 
Do fast conversion happen inside the “core”?  
Probably not. 
Dasgupta and Sen (2017, to appear) 



SN Neutrino 
Phenomenology 

 



DSNB 

See reviews by Beacom and Lunardini 

Coming soon to a detector near you? 

Image: Beacom & Vagins 



Electron Neutrinos in Super-K 
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If energies on higher side, inelastic reactions very useful 

Laha and Beacom (2015) 



Non-electron Neutrinos 
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At large upcoming liquid 
scintillator detectors, e.g., 
JUNO, RENO 

Need low threshold, good 
energy resolution to detect 
the neutrino-proton elastic 
scattering 

Beacom, Farr, Vogel 
See also Dasgupta and Beacom (2010) 



Pointing, Timing, and Alerts 
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SNEWS 
http://snews.bnl.gov 

 
 
 

Pointing within 5 degrees 
Timing within 3 ms Beacom and Vogel 

Tomas et al 

Pagliaroli et al 
Raffelt and Halzen 



Mass Hierarchy from Risetime 
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Signal rises faster for Inverted Hierarchy 
Serpico et al (2012) 



Hydrodynamic Instability 
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Lund et al  (2012) 



SASI 
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Georg Raffelt, MPI Physics, Munich Massive Neutrinos, NTU, Singapore, 9–13 Feb 2015 

Variability seen in Neutrinos (3D Model) 

Tamborra, Hanke, Müller, Janka & Raffelt, arXiv:1307.7936 
See also Lund, Marek, Lunardini, Janka & Raffelt, arXiv:1006.1889 

Can see SASI “bubbling” in the neutrino signal  

Tamborra et al 



Beaming of Lepton Asymmetry 
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Georg Raffelt, MPI Physics, Munich Massive Neutrinos, NTU, Singapore, 9–13 Feb 2015 

Sky Map of Lepton-Number Flux (11.2 MSUN Model) 

Tamborra, Hanke, Janka, Müller, Raffelt & Marek, arXiv:1402.5418 

Lepton-number flux (𝝂𝒆 − 𝝂𝒆) relative to 4p average 
Deleptonization flux into one hemisphere, roughly dipole distribution 

(LESA — Lepton Emission Self-Sustained Asymmetry)  
 

Positive dipole 
direction and 
track on sky 

Tamborra et al  (2013, 2014) 



Shock Propagation 
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Tomas et al 

Many papers during 2000-2007 on shock waves imprint, turbulence, phase effects etc. See 
review by Mirizzi et al. 2016. 

Imprints of SN hydrodynamics in Neutrino Signal 



Nucleosynthesis 
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Recent work suggests r-process unlikely. More work needed. 

Duan et al (2011), Wu et al (2015) 



Opportunities & Challenges 
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Georg Raffelt, MPI Physics, Munich Massive Neutrinos, NTU, Singapore, 9–13 Feb 2015 

Three Phases – Three Opportunities 

Standard Candle (?)  
•  SN theory 
•  Distance 
•  Flavor conversions 
•  Multi-messenger 
    time of flight 

Strong variations  
(progenitor, 3D effects, 
 black hole formation, …) 
• Testing astrophysics of 
   core collapse 
• Flavor conversion has 
   strong impact on signal 
   (Collective & MSW) 
 

EoS & mass dependence 
• Testing nuclear physics 
• Nucleosynthesis in  
   neutrino-driven wind 
• Particle bounds from 
   cooling speed (axions …) 
 
 

Burst Accretion Cooling 

SN standard candle? Astrophysics Nuclear physics 

SN theory Collective effects? Nucleosynthesis 

Timing Shock revival? Exotics/Axions 

Mass hierarchy Mass hierarchy? … 

… … 


