WIN 2017, Irvine

Supernova Neutrinos Theory and Future Detection

Basudeb Dasgupta Tata Institute of Fundamental Research, Mumbai

Sanduleak –69 202

Supernova 1987A 23 February 1987

IN CALAXY NEAR US

Are we ready for the next supernova? Review of experimental facilities

Talk by Prof. Masayuki Nakahata See also recent review by Mirizzi, Tamborra, Janka, Scholberg (2016)

This talk is mainly about the progress in neutrino theory

Basudeb Dasgupta, TIFR Mumbai

19 June at WIN 2017, Irvine

What we know

Review by Vissanni (2014)

Average Neutrino Energy = 12 MeV + - 10%Total Energy in anti-nue = $5 \times 10^{52} \text{ erg} + 50\% - 20\%$

SUPERNOVA PHYSICS

SN Theory

Neutrino Mechanism

3D Explosions

Melson et al (2015)

Failed SN

Ott and O'Connor (2011) Horiuchi et al (2014) ...

The Road Ahead

- Systematic 3D simulations and code-comparisons
- Full momentum-space of neutrinos
- Oscillations? (or other "exotic" physics)

Luminosity and Temperature

Garching group simulation of a 27 solar mass SN in 1d

NEUTRINO PHYSICS

Formalism

Raffelt and Sigl Pehlivan, Balantekin Kajino (2011) Vlasenko, Fuller, Cirilgliano (2013,2014) Vaanaanen and Volpe (2014), Serrau and Volpe (2014) Kartavtsev, Raffelt, Vogel (2015)

Oscillation Framework

Nonlinear nu-nu effects are important when nu-nu interaction frequency exceeds the typical vacuum oscillation frequency

These interactions give rise to "Collective" flavor conversions

MSW Effects

Always in neutrinos

 $(\Delta m_{atm}^2, \theta_{13})$ at $10^3 - 10^4$ g/cc In neutrinos for NH and in antineutrinos for IH.

These effects occur at r~500 km or more

Basudeb Dasgupta, TIFR Mumbai

19 June at WIN 2017, Irvine

Neutrino-Induced Potential

Two neutrinos forward-scattering off each-other can exchange flavor

$$\mathbf{i} \frac{\mathrm{d}}{\mathrm{d}t} \begin{vmatrix} |\nu_e(\mathbf{k})\nu_e(\mathbf{q})\rangle \\ |\nu_e(\mathbf{k})\nu_\mu(\mathbf{q})\rangle \\ |\nu_\mu(\mathbf{k})\nu_e(\mathbf{q})\rangle \\ |\nu_\mu(\mathbf{k})\nu_\mu(\mathbf{q})\rangle \end{vmatrix} = V_2 \begin{vmatrix} |\nu_e(\mathbf{k})\nu_e(\mathbf{q})\rangle \\ |\nu_e(\mathbf{k})\nu_\mu(\mathbf{q})\rangle \\ |\nu_\mu(\mathbf{k})\nu_e(\mathbf{q})\rangle \\ |\nu_\mu(\mathbf{k})\nu_\mu(\mathbf{q})\rangle \end{vmatrix} \qquad \text{where} \qquad V_{2\nu} = \sqrt{2}G_F \xi \frac{1}{V} \begin{vmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

Pantaleone (1992)

Many-Body Physics

Flavor histories of all neutrinos get coupled

Image: Duan

Basudeb Dasgupta, TIFR Mumbai

19 June at WIN 2017, Irvine

Collective Effects

Duan, Fuller, Carlson, and Qian (2005-06) See review by Duan, Fuller, Carlson, and Qian

Many Interesting Effects

Lot of work in 2005-2010

More than 100 papers on collective effects by: Abazajian, Adams, Balantekin, Banerjee, Beacom, Bell, Blennow, Carlson, Capozzi, Chakraborty, Cherry, Choubey, Dasgupta, DeGouvea, Dighe, Dolgov, Duan, Esteban-Pretel, Fogli, Friedland, Fuller, Gava, Giles, Hannestad, Hansen, Izaguirre, Kneller, Kostelecky, Lisi, Lunardini, Marrone, McLaughlin, Mirizzi, Pantaleone, Pastor, Pehlivan, Qian, Raffelt, Samuel, Sarikas, Serpico, Semikoz, Seunarian, Shalgar, Sigl, Smirnov, Stodolsky, Tomas, Vogel, Volpe, Wong...(and you?)

All these effects take place at r~200 km

Linear Stability Analysis

Banerjee, Dighe, and Raffelt (2010)

$$\varrho_{\omega,v_z,\varphi} = \frac{1}{2} \operatorname{Tr}(\varrho_{\omega,v_z,\varphi}) \mathbb{I} + \Phi_{\nu} \frac{g_{\omega,v_z,\varphi}}{2} \begin{pmatrix} s_{\omega,v_z,\varphi} & \overbrace{S_{\omega,v_z,\varphi}} \\ S_{\omega,v_z,\varphi}^* & -S_{\omega,v_z,\varphi} \end{pmatrix}$$

Off-diagonal part of density matrix = Not flavor eigenstate

$$i\partial_r S_{\omega,u} = [\omega + u(\lambda + \epsilon \mu)]S_{\omega,u}$$
$$- \mu \int du' d\omega' (u + u')g_{\omega'u'}S_{\omega',u'}.$$

Look at just the growth of this off-diagonal part

Breaking Spacetime Symmetries

 $i\partial_r \to i(\partial_t + \mathbf{v} \cdot \nabla)$

- Solution can depend on time
- Solution can depend on angular coordinates even if the source is approximately spherical

Think of the off-diagonal component as a field over x and t

$$S(t, \mathbf{x}) \to Q(\omega, \mathbf{k})$$

Inhomogeneity

Small inhomogeneities grow larger

Mirizzi, Mangano, Saviano (2014) Duan and Shalgar (2015)

Basudeb Dasgupta, TIFR Mumbai

19 June at WIN 2017, Irvine

Nonstationarity

Instability starts as a small pulsating seed, and cascades down to a large steady instability Duan and Abbar (2015)

Duan and Abbar (2015) Dasgupta and Mirizzi (2015) Capozzi, Dasgupta, Mirizzi (2016)

Fast Conversion

Neutrinos change flavor within a few cm or at most a meter from their emission region because of nontrivial angular distribution of neutrinos

Emphasized since 2005 by Ray Sawyer, but clearly understood only in the past few years

Several papers by R. Sawyer (2005, 2008, 2015)

Why Fast Conversion?

Crossing and Back-flux

Chakraborty, Hansen, Izagguire, Raffelt (2016) Dasgupta, Mirizzi, Sen (2016)

No backward flux

Has backward flux

Talk by Mirizzi

0.08

0.06

0.04

0.02

Dispersion Relations

Some combinations of

 (ω, \mathbf{k})

not allowed to propagate

Are these all instabilities?

Izagguire, Raffelt, Tambora (2016)

Instability Theory

Detailed understanding of the complex analytic structure of poles of the dispersion relation gives the instabilities

Capozzi, Dasgupta, Lisi, Marrone, Mirizzi (2017)

Work in Progress

Should we worry about fast conversions impacting the SN explosion process itself? Probably yes.

Do fast conversion happen inside the "core"? Probably not.

Dasgupta and Sen (2017, to appear)

SN NEUTRINO PHENOMENOLOGY

DSNB

Coming soon to a detector near you?

See reviews by Beacom and Lunardini

Electron Neutrinos in Super-K

If energies on higher side, inelastic reactions very useful

Laha and Beacom (2015)

Basudeb Dasgupta, TIFR Mumbai

19 June at WIN 2017, Irvine

Non-electron Neutrinos

At large upcoming liquid scintillator detectors, e.g., JUNO, RENO

Need low threshold, good energy resolution to detect the neutrino-proton elastic scattering

Beacom, Farr, Vogel See also Dasgupta and Beacom (2010)

Pointing, Timing, and Alerts

Pointing within 5 degrees

Beacom and Vogel Tomas et al Timing within 3 ms

Mass Hierarchy from Risetime

Serpico et al (2012)

Hydrodynamic Instability

Lund et al (2012)

SASI

Can see SASI "bubbling" in the neutrino signal

Beaming of Lepton Asymmetry

Tamborra et al (2013, 2014)

Shock Propagation

Imprints of SN hydrodynamics in Neutrino Signal

Many papers during 2000-2007 on shock waves imprint, turbulence, phase effects etc. See review by Mirizzi et al. 2016.

Basudeb Dasgupta, TIFR Mumbai

19 June at WIN 2017, Irvine

Nucleosynthesis

Recent work suggests r-process unlikely. More work needed.

Duan et al (2011), Wu et al (2015)

Basudeb Dasgupta, TIFR Mumbai

19 June at WIN 2017, Irvine

Opportunities & Challenges

Burst	Accretion	Cooling
SN standard candle?	Astrophysics	Nuclear physics
SN theory	Collective effects?	Nucleosynthesis
Timing	Shock revival?	Exotics/Axions
Mass hierarchy	Mass hierarchy?	•••
•••	•••	