Working Group Summary Electroweak Interactions (Theory)

> Wolfgang Altmannshofer altmanwg@ucmail.uc.edu

WIN 2017, UC Irvine, June 19 - 24, 2017

The Electroweak Working Group

Woking Group Overview: New Physics at the EW Scale and Naturainess (Theory)	Prof. JULFAN	D
Pacific Baliroom ABC, UC Invine, Invine, CA, USA	09:00 - 09	:40
Working Group Overview: Electroweak Interactions (Experiment)	Prof. Mayde VELASCO	B
Pacific Ballroom ABC, UC Irvine, Irvine, CA, USA	09.40 - 10	20
Developments in treating the SM as an EFT	Dr. William SHEPHERD	
Emerald Bay B, UC Invine, Invine, CA, USA	11:20 - 11	:50
Probing for anomalous Higgs-VV couplings in production and decay H4I at CMS	Jettrey ROSKES	D
Emerald Bay B, UC Invine, Invine, CA, USA	11:50 - 12	20
Heavy Neutrino Search from the Higgs decay	Dr. Anindam DAS	D
Emerald Bay B, UC Irvine, Irvine, CA, USA	12:20 - 12	:50
QCD corrections to diboson processes	Tobies NEUMANN	Đ
Emerald Bay B, UC Invine, Invine, CA, USA	14:30 - 15	:00
Precision Diboson Observables for the LHC	Dr. Merat FREYTSIS	Ð
Emerald Bay B, UC Irvine, Irvine, CA, USA	15:00 - 15	:30
Multi-Boson production cross sections at CMS	Mr. Daneng YANG	Ð
Emerald Bay B, UC Irvine, Irvine, CA, USA	15:30 - 16	:00
Cross section and coupling measurements with the ATLAS detector for the 125 GeV Higgs Boson	Ms. Hannah HERDE	m
Emerald Bay B, UC Invine, Invine, CA, USA	16:30 - 17	:00
Cites over new regarding miggs Production Resolds	Prancesco PABOZZO	-
Emerald Bay B, UC Irvine, Irvine, CA, USA	17:00 - 17	:30
Measurements of the Higgs boson mass and its spin and CP properties with the ATLAS Detector	Prof. Stephen SEKULA	
Emeraid Bay B, UC Invine, Invine, CA, USA	17:30 - 18	:00
Higgs Properties with the CMS detector	Dr. roberto ROSSIN	
Emerald Bay B. UC Initia Initia CA. USA	18:00 - 18	:30

Charged Higgs production in association with a W or a top	Prof. Nikolsos KIDONAKIS	D
Emerald Bay B, UC Irvine, Irvine, CA, USA	11:30 - 12:	:00
CMS Higgs and New Physics	Dr. Pierluigi BORTIGNON	B
Emerald Bay B, UC Irvine, Irvine, CA, USA	12:00 - 12:	30
Search for rare or non-standard production and decay modes of the Higgs boson with the ATLAS detector	Prof. Dhiman CHAKRABORTY	D
Emerald Bay B, UC Irvine, Irvine, CA, USA	12:30 - 13	00
CMS Double Higgs Searches	Michael KROHN	D
Emerald Bay B, UC Irvine, Irvine, CA, USA	14:30 - 15:	00
ATLAS Higgs physics prospects at the high luminosity LHC	Dr. Tulle VAROL	Þ
Emerald Bay B, UC Irvine, Irvine, CA, USA	15:00 - 15:	30
CMS Upgrade (Phase-I and Phase-I) with future prospects in terms of Higgs/electroweak measurements	Petar MAKS/MOVIC	Đ
Emerald Bay B, UC Irvine, Irvine, CA, USA	15:30 - 18	00
Buminating Electroweak States at Hadron Colliders	Ahmed ISMAIL	e
Emerald Bay B, UC Irvine, Irvine, CA, USA	16:30 - 17	00
Searches for electroweak production of supersymmetric gauginos and sleptons and R-part and long-lived signatures with the ATLAS detector	ty violating Mr. Ruo yu SHANG	e
Emerald Bay B, UC Invine, Irvine, CA, USA	17:00 - 17	30
Searches for squarks and gluinos with the ATLAS detector	Dr. Vakhtang TS/SKAR/DZE	e
Emerald Bay B, UC Irvine, Irvine, CA, USA	17:30 - 18	00
Charged-lepton decays from soft flavour violation in a two-Higgs doublet seesaw model	Ms. Elke AEIKENS	2
Emerald Bay B, UC Irvine, Irvine, CA, USA	18.00 - 18	30
Electroweak Precision Physics	Prof. Jens ERL	ER
Emerald Bay A, UC Invine, Irvine, CA, USA	09.00 - 09	45
Constraining Higgs couplings using Bs -> mu mu	Dr. Xing-Bo YU	AN
Emerald Bay & LIC Invine Invine C& USA	09.45 - 10	10

2 overview talks + 13 experimental talks + 9 theory talks Thank you for all the fantastic contributions!

The Standard Model of Particle Physics

huge hierarchy between the electroweak scale and the Planck scale that is not stable under radiative corrections

 $v^2/M_{
m Pl}^2\sim 10^{-34}$

huge hierarchy between the electroweak scale and the Planck scale that is not stable under radiative corrections

$v^2/M_{ m Pl}^2$	\sim	10) ⁻³⁴
-------------------	--------	----	------------------

rolling a 7 with two dice	1.67E-01
rolling a 12 with two dice	2.78E-02
getting 10 heads in a row flipping a coin	9.77E-04
drawing a royal flush (no wild cards)	1.54E-06
getting struck by lightning in one year in the US	2.00E-06
winning Pick-5	5.41E-08
winning MEGA-millions lottery (5 numbers+megaball)	3.86E-09
your house getting hit by a meteorite this year	2.28E-10
drawing two royal flushes in a row (fresh decks)	2.37E-12
your house getting hit by a meteorite today	6.24E-13
getting 53 heads in a row flipping a coin	1.11E-16
your house getting hit by a meteorite AND you being	
struck by lightning both within the next six months	1.14E-16
your house getting hit by a meteorite AND you being	
struck by lightning both within the next three months	2.85E-17

huge hierarchy between the electroweak scale and the Planck scale that is not stable under radiative corrections

$v^2/M_{\rm Pl}^2$	\sim	10^{-34}
--------------------	--------	------------

rolling a 7 with two dice	1.67E-01
rolling a 12 with two dice	2.78E-02
getting 10 heads in a row flipping a coin	9.77E-04
drawing a royal flush (no wild cards)	1.54E-06
getting struck by lightning in one year in the US	2.00E-06
winning Pick-5	5.41E-08
winning MEGA-millions lottery (5 numbers+megaball)	3.86E-09
your house getting hit by a meteorite this year	2.28E-10
drawing two royal flushes in a row (fresh decks)	2.37E-12
your house getting hit by a meteorite today	6.24E-13
getting 53 heads in a row flipping a coin	1.11E-16
your house getting hit by a meteorite AND you being	
struck by lightning both within the next six months	1.14E-16
your house getting hit by a meteorite AND you being	single event sensitivity of m
struck by lightning both within the next three months	2.85E-17

huge hierarchy between the electroweak scale and the Planck scale that is not stable under radiative corrections

$v^2/M_{\rm Pl}^2$	\sim	10) ⁻³⁴
--------------------	--------	----	------------------

rolling a 7 with two dice	1.67E-01
rolling a 12 with two dice	2.78E-02
getting 10 heads in a row flipping a coin	9.77E-04
drawing a royal flush (no wild cards)	1.54E-06
getting struck by lightning in one year in the US	2.00E-06
winning Pick-5	5.41E-08
winning MEGA-millions lottery (5 numbers+megaball)	3.86E-09
your house getting hit by a meteorite this year	2.28E-10
drawing two royal flushes in a row (fresh decks)	2.37E-12
your house getting hit by a meteorite today	6.24E-13
getting 53 heads in a row flipping a coin	1.11E-16
your house getting hit by a meteorite AND you being	
struck by lightning both within the next six months	1.14E-16
your house getting hit by a meteorite AND you being	single event sensitivity of m
struck by lightning both within the next three months	2.85E-17

Your house getting hit by a meteorite and you being struck by lightning twice, all by the end of this talk Null results teach us valuable lessons: traditional natural scenarios with electroweak fine-tuning no worse than 10% are very cornered.

Does it mean paradigm shifting?

Could be. It could be a dramatically new paradigm or a mild paradigm shift: meso-tuning scenario such as heavy SUSY scenario with susy scalars \sim (10 - 100) TeV (sufficient to explain the Higgs mass). Yet the bottom of the spectrum including the gluino and the electroweak sector could still be light and be searched for at the LHC.

[JiJi Fan]

New Physics Parameter Space

New Physics Parameter Space

model building effort $(\sim 1/\Lambda^2)$

New Physics Parameter Space

Two Candidate Theories

Higgs EFT

- That's some "Higgs-like scalar"
- If that's not THE Higgs then something else breaks EWS
- Expand EW sector a la χPT
- Scalar contributions may be suppressed by a lower scale, include them to higher orders

Standard Model EFT

- That's the Higgs
- We can insist on full EW symmetry at the weak scale
- Any new physics appears suppressed by a large scale
- Expand straightforwardly in operator dimension

[Will Shepherd]

The Standard Model as Effective Theory

SMEFT Developments

- Fits to LEP and Higgs data
- Development of multiple bases and translation tools
- Revitalization of matching techniques
 - Automating Feynman 1-loop matching
 - CDE techniques in functional matching
- Loop corrections to precise observables

[Will Shepherd]

New Search Strategies for Elusive Light New Physics

light electroweak states with small mass splitting

$$pp \rightarrow \chi^0 \chi^\pm \rightarrow \chi^0 \chi^0 W^*$$

For mass differences between ~0.2-5 GeV, leptons from χ^+ decay are too soft to see in detector

But decay is prompt enough to avoid disappearing tracks!

(unless disappearing track search is improved)

Mahbubani et al., 1703.05327 Fukuda et al., 1703.09675 canonical example: Higgsinos (doublets)

8 TeV monojet limits

 $\begin{aligned} \text{ATLAS}: m_{\chi} > 103 \,\text{GeV}\,\text{(SR4)} \\ \text{CMS}: m_{\chi} > 73 \,\text{GeV}\,\text{(SR5)}, \end{aligned}$

Han et al., 1401.1235

→ alternative: go back to mono-X searches

Current limits comparable to LEP

[Ahmed Ismail]

Photon final-state radiation

Take advantage of photon radiation by boosting In monojet events with $p_{\tau}(j) > m_{\chi}$, jet recoils against missing energy + any radiation

Pay statistical price of α for radiation, but benefit from low backgrounds and extra kinematic handle in γ + j + MET

[Ahmed Ismail]

Wolfgang Altmannshofer (UC)	Summary: Electroweak Interactions (Theory)	June 23, 2017 10 / 2
-----------------------------	--	----------------------

Illuminating Electroweak States

Results - Higgsino

Adding photon to monojet final state helps, except in the case of low statistics (high mass) with significantly improved systematic uncertainties

[Ahmed Ismail]

Still Many Questions about the Higgs

Probing Sterile Neutrinos with Higgs Decays

 $h \rightarrow \nu N \rightarrow 2\nu 2\ell$

[Arindam Das]

An Extended Higgs Sector for Neutrinos

- explain tiny v-masses
- additional particles: φ_3 , φ_4 , ν_R
- elegant symmetry:
 - no FCNI at tree-level
 - one-loop contributions are finite
 - explains UPMNS & VCKM different

open questions:

- model experimental testable in FCNIs
- solves the exp.-theor.
 - discrepancy of μ -MDM?

Yes!

[Elke Aeikens]

A Flavorful Higgs

Higgs FCNC: exp

e	μ	au		
e^+e^- collider	$\mathcal{B} < 0.035\%$	$\mathcal{B} < 0.61\%$	e	 direct search
	$\mu < 2.8$	$\mathcal{B} < 0.25\%$	μ	
		$\mu = 1.1 \pm 0.2$	τ	
				▼ indirect study
u	<i>c</i>	t	,	McWilliams, Li 1981
		$\mathcal{B} < 0.55\%$	u	Shanker 1982
			י ו	Barr, Zee 1990
		$\mathcal{B} < 0.40\%$	c	Kanemura, Ota, Tsumura 2006
			-	Davidson, Grenier 2010
		$\mu_{tth} = 2.3^{+0.7}_{-0.6}$	t	Golowich et al 2011
			1	Buras, Girrbach 2012
d	8	ь		Harnik Kopp Zupap 2013
			d	Gorbahn Haisch 2013
			, a	Celis, Cirigliano, Passemar 2014
			8	
		$\mu = 0.70^{+0.29}_{-0.27}$	b	

[Xing-Bo Yuan]

Complementarity of Direct and Indirect Searches

▶ light gray: 95% CL allowed with $\bar{Y}_{sb} = 1.4 \times 10^{-4}$ ▶ dark gray: 95% CL allowed with $\bar{Y}_{sb} = 3.4 \times 10^{-4}$ ▶ blue: $\mu_{\mu\mu} < 2.8$ at 95% CL ATLAS Run I + II ▶ $|\bar{Y}_{sb}| = 3.4 \times 10^{-4}$: maximal value allowed by $B_s - \bar{B}_s$

[Xing-Bo Yuan]

Searches for New Physics and precision measurements at the LHC rely on detailed quantitative descriptions of QCD and EW processes

- Precision knowledge of PDFs
- Sophisticated Monte Carlo tools
- Higher order corrections: NLO, NNLO, N³LO in QCD, NLO electroweak, resummation, ...

(both for SM processes and for new physics processes!)

• ...

Precise SM Predictions for Diboson Production

LHC diboson production: theory perspective

Diboson processes are DY-like $q\bar{q}$ initiated at LO. New channels gq at NLO, and gg, qq' at NNLO.

NNLO QCD is absolutely mandatory for

- .. a somewhat reliable uncertainty estimation by scale var.
- .. competing with %-level experimental precision

Let's not forget: numerically $lpha_s^2\simeq lpha$ NLO (QCD + EW) effects for most processes: '15 '16

(Biedermann, Denner, Dittmaier, Hofer, Jaeger, '16); (Biedermann, Billoni, Denner, Dittmaier, Hofer, Jaeger, Salfelder '16)

(Denner, Dittmaier, Hecht, Pasold '15, '16); ...

Let's also not forget: Resummation (p_T , jettiness, jet-veto, ..), PS

(Dawson, Jaiswal, Li, Ramani, Zeng '16); (Wang, Li, Liu, Shao, Li '13); (Grazzini, Kallweit, Rathlev, Wiesemann '15); (Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi '14); ...

[Tobias Neumann]

Sophisticated Methods are Used

NNLO is still highly difficult!

Despite enormous progress in..

- Loop calculation techniques: calculate master integrals
 - Revival of differential equations: "canonical form" (Henn '13)
 - Numerical techniques (MB, Sector Decomposition)
 e.g. NLO HH (Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke '16)
- Availability of 2-loop VV amplitudes (Gehrmann, Tancredi '12; (Caola, Henn, Mehikov, Smirnov, '14); (Gehrmann, Manteuffel, Tancredi '15)
- Subtraction techniques to combine IR singular pieces
 - Local: Sector Decomposition based (Cankon '10, '11) (Bougheau, Mehriliov, Pertiello 12), Antennae (Gehrmann-De Ridder, Gehrmann, Glover V29; (Curile, Glover, Wells' 13), ColorFull (DelDuca, Somogri, Tiamontano, Toxcanyi 15)
 - Global (slicing): q_t (Catani, Grazzini 107, N-jettiness (Gaunt, Stahlhofen, Tackmann, Walsh '15); (Boughezal, Liu, Petriello '15)
- Computational advancements
- ...

[Tobias Neumann]

Independent Cross Checks are Crucial

Slicing example: $\gamma\gamma$ at NNLO

σ [fb]	LO	NLO	NNLO
$\mu_F = \mu_R = m_{\gamma\gamma}/2$	5045 ± 1	26581 ± 23	45588 ± 97
$\mu_F = \mu_R = m_{\gamma\gamma}$	5712 ± 2	26402 ± 25	43315 ± 54
$\mu_F = \mu_R = 2m_{\gamma\gamma}$	6319 ± 2	26045 ± 24	41794 ± 77

Catani	Cieri	de	Florian	Ferrera	Grazzini	111)
Cutain,		uc.	i ioi iaii,		01022111	,

MCFM: (Campbell, Ellis, Li, Williams '16)

σ (fb)	LO	NLO	NNLO
$\mu_F = \mu_R = M_{rr}/2$	5045 ± 1	26581 ± 23	42238 ± 330
$\mu_F = \mu_R = M_{77}$	5712 ± 2	26402 ± 25	40269 ± 250
$\mu_F = \mu_R = 2\dot{M}_{\gamma\gamma}$	6319 ± 2	26045 ± 24	38901 ± 310

Erratum (Catani, Cieri, de Florian, Ferrera, Grazzini '16)

[Tobias Neumann]

New High Precision Diboson Observables (1)

use the fact that electro-weak symmetry is approximately restored at high energy to define precision observables in di-boson production

 $\gamma\gamma, Z\gamma, ZZ$ Ratio observables

$V_{1}^{0}V_{2}^{0}$	$C^u_{12} \cdot 10^5$	$C^d_{12} \cdot 10^5$
$\gamma\gamma$	1.2	0.07
$Z\gamma$	2.2	0.7
ZZ	1.6	3.3

 $u\bar{u}$ dominates – PDFs mostly cancel

[Marat Freytsis]

New High Precision Diboson Observables (2)

 $W^{\pm}\gamma, W^{\pm}Z$

[Marat Freytsis]

Wolfgang Altmannshofer (UC)

Higher Order Corrections Seem Under Control

low uncertainties, small QCD corrections candidates for (even) high(er)-precision calculation

[Marat Freytsis]

Wolfgang Altmannshofer (UC)

Precise Predictions for Charged Higgs Production

- many new results in charged Higgs production
- total cross sections for tH^- production
- top-quark p_T and rapidity distributions in tH^- production
- total cross sections for H^-W^+ production
- charged-Higgs p_T and rapidity distributions in H^-W^+ production
- higher-order corrections are very significant

[Nikolaos Kidonakis]

[Nikolaos Kidonakis]

No conclusion, keep exploring!

[JiJi Fan]