Flavor and Precision

Benjamín Grinstein
WIN2017
(The 26th International Workshop on Weak Interactions and Neutrinos)

June 19, 2017

Introduction

Flavor (at least this talk):

Properties of elementary particles that contain
strange, charm or bottom quarks,
i.e., different flavors

Particularly interested in (at least this talk):

Transitions that change flavor

Flavor?: In the absence of weak interactions
(in the SM context: in the limit $g_{2}=0$)
there is a conserved quantum number for each of u, d, s, c, b, t

$$
U(1)_{u} \times U(1)_{d} \times U(1)_{s} \times U(1)_{c} \times U(1)_{b} \times U(1)_{t}
$$

This is a sufficiently good symmetry that we can classify teh spectrum of elementary particles by it - approximately.

It is sufficiently good because the weak interactions are weak.

Weak interactions are weak not because g_{2} is small
but because the mediators, W and Z , are heavy compared to $m_{u}<\ldots<m_{b}$

Top is heavy: weak interactions are not weak
Flavor of top is still flavor and interesting, but not part of this talk

Weak interaction rates are weak: suppressed by at least

$$
\left(g_{2} \frac{E}{M_{W}}\right)^{4} \lesssim G_{F}^{2} m_{b}^{4} \sim 10^{-7}
$$

Excellent approximation: lowest order perturbation theory in weak interatcions

EFT - Effective Field Theory

Hierarchy of scales $\quad E \ll M_{W} \ll \Lambda_{N P}$

Assume New Physics (NP) is "heavy" and separates: $\quad \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\mathrm{NP}}$

At low energies (m_{b} or below) $\quad \mathcal{L}=\mathcal{L}_{\mathrm{QCD}}+\mathrm{EM}+\mathcal{L}_{\mathrm{W}}^{\mathrm{eff}}+\mathcal{L}_{\mathrm{NP}}^{\mathrm{eff}}$
Generically:

$$
\mathcal{L}_{\mathrm{W}}^{\mathrm{eff}}=\frac{g_{2}^{2}}{M_{W}^{2}} C O(x) \quad \mathcal{L}_{\mathrm{NP}}^{\mathrm{eff}}=\frac{1}{\Lambda_{\mathrm{NP}}^{2}} C O(x)
$$

- Heavy degrees of freedom (W/Z, top, NP heavy particles) "integrated out"
- Coefficients C
- are process independent
- include short distance QCD effects ("corrections")
- dominant QCD effect in large logs, eg, $\ln \left(\mu / M_{\mathrm{W}}\right)$, re-summed by RG methods
- Operators $O(x)$
- organized by dimension; here $\operatorname{dim}=6$
- NP may introduce same or new O 's
- Caveat: NP with light states

Flavor and Precision

Generic amplitude

$$
\left.\mathcal{A}=G_{F} \times \mathrm{CKMs} \times C \times\langle\text { out }| O(0) \mid \text { in }\right\rangle
$$

- Want G_{F}, CKMs, C
- Disentangle: Need several measurements
- Compute:
- Coefficients C : in SM, in terms of other parameters
- Obtain other parameters elsewhere (eg, m_{b}, α_{s}, from Y mass)
- Matrix elements
- Process dependent
- Non-perturbative

At this point it is standard to say...
then we use the lattice results to get non-perturbative matrix elements
... and we carry on blindly
$2 \phi:$

- Lattice results: often useful, downright of central importance
- Lattice results limited:
- Few particles (2- and 3-point functions ok, 4-pt barely)
- Small region of phase space in form factors
- Difficult: phases
- Hard to impossible: Non-local operators
- Harder(?) to Impossible: inclusive rates
- ...

End interlude

Precision: strategies I

"Clean" observables

Observable independent of matrix elements

Examples:

1. CP asymmetries in mixing/decay
review:

$$
A_{\mathrm{f}}(t)=\frac{\Gamma\left(\mathrm{B}_{\text {phys }}(t) \rightarrow \mathrm{f}\right)-\Gamma\left(\overline{\mathrm{B}}_{\text {phys }}(t) \rightarrow \overline{\mathrm{f}}\right)}{\Gamma\left(\mathrm{B}_{\text {phys }}(t) \rightarrow \mathrm{f}\right)+\Gamma\left(\overline{\mathrm{B}}_{\text {phys }}(t) \rightarrow \overline{\mathrm{f}}\right)} \quad \text { depends on } \quad \rho_{\mathrm{f}}=\frac{\langle\mathrm{f}| \mathscr{H}\left|\overline{\mathrm{B}}^{0}\right\rangle}{\langle\mathrm{f}| \mathscr{H}\left|\mathrm{B}^{0}\right\rangle} .
$$

$$
\text { If } \mathcal{H}=\mathcal{H}^{\Delta B=1}+\mathcal{H}^{\Delta B=1 \dagger} \quad \text { satisfies } \quad(C P) \mathcal{H}^{\Delta B=1}(C P)^{\dagger}=\exp (-i \alpha) \mathcal{H}^{\Delta B=1 \dagger}
$$

$$
\text { and } f^{C P}= \pm f \quad \text { then }
$$

$$
\rho_{f}=\mp \exp (i \alpha)
$$

(BG, London+Peccei)
Caveat: $\quad \mathcal{H}=\xi C_{\text {tree }} O_{\text {tree }}+\xi^{\prime} C_{\text {loop }} O_{\text {loop }}+$ h.c.

$$
\rho_{f}=\frac{\xi}{\xi^{*}}\left(1+2 i \operatorname{Im}\left(\frac{\xi^{\prime}}{\xi}\right) \frac{\langle f| C_{\text {loop }} O_{\text {loop }}|B\rangle}{\langle f| C_{\text {tree }} O_{\text {tree }}|B\rangle}\right)
$$

Moral: Still need matrix elements (if only to bound errors)
2. Lepton Universality Violation

$$
R_{K^{*}}=\frac{\operatorname{Br}\left(B \rightarrow K^{*} \mu \mu\right)}{\operatorname{Br}\left(B \rightarrow K^{*} e e\right)}
$$

In SM: $\quad R_{K^{*}}=1 \quad$ for $\quad m_{e}=m_{\mu}$

Caveat: Actually $m_{e} \neq m_{\mu}$
Corrections: phase space \rightarrow near endpoint
Figure of merit $\frac{m_{\mu}-m_{e}}{E_{\ell \ell}}$
Bordone et al 1605.07633
Colinear/soft $\quad \frac{\alpha}{\pi} \ln ^{2}\left(m_{\mu} / m_{e}\right) \approx 7 \% \quad$ need re-summing
Caveat redux: Hadronic contributions important near endpoint e.g., $B \rightarrow K^{*} \pi \rightarrow K^{*} e^{+} e^{-} \gamma$

Lesson \#1: "Clean" observables require cleaning up after them

Precision: strategies II

Inclusive observables

If sufficiently inclusive, perturbation theory (unconfined quarks) can be used
(aka, quark-hadron duality - a la Blook-Gilman, PQW)

1. Textbook example: $R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { all }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}$

PQW, PRD13(1976)1958

FIG. 10. Model with five quark flavors, charge $\frac{1}{3}$ for additional quark, and nondegenerate fourth and fifth flavors.

FIG. 14. The model of Fig. 10 with an additional heavy lepton, $m_{l}=1.7 \mathrm{GeV}$.

We understand why this works:
"Smearing" $\bar{R}(s, \Delta)=\frac{\Delta}{\pi} \int_{0}^{\infty} d s^{\prime} \frac{R\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)^{2}+\Delta^{2}}$
Dispersion relation $\quad \Pi(z)=\frac{1}{\pi} \int_{0}^{\infty} d s \frac{R(s)}{z-s}$

$$
\Rightarrow \quad 2 i \bar{R}(s, \Delta)=\Pi(s+i \Delta)-\Pi(s-i \Delta)
$$

That the self-energy can be computed is understood from OPE

$$
\int d^{4} x e^{i q x} T(J(x) J(0))=\sum q^{-n} c_{n} O_{n}
$$

valid in the "Deep Euclidean" region and $\mathrm{O}_{1}=\mathbf{1}$ dominates

Caveats:

- Finite order in perturbative coefficients (with RG re-sumation
- Integral over s goes to infinity
- "Deep Euclidean" is $s \pm i \Delta$ with $\Delta \rightarrow \infty$ but we take Δ large enough that it smears resonances
- Sub-leading operators

Chay, BG, Georgi, PLB247(1990)399
Closer to home examples:
2. Inclusive semileptonic decays: $\Gamma\left(B \rightarrow X_{c} \ell \nu\right)$

Bigi et al, PRL71(1993)496
Bigi et al, PLB323(1994)408
Manohar+Wise, PRD49(1994)1310
Trott, PRD70(2004)073003
Bauer et al, PRD70(2004) 094017

- Rate proportional to $\left|V_{c b}\right|^{2}$, used in CKM determination
- Dispersion relation, need >1 integrated kinematic variable: $d \Gamma / d E_{\ell \nu}$
- Moments of kinematic distributions: more inclusive
- Expansion in Λ / m_{b}; corrections first at $\left(\Lambda / m_{b}\right)^{2}$
- Coefficients of OPE: perturbative in α_{s}. Double expansion:

$$
\Gamma=\Gamma_{0}^{(0)}+\frac{\alpha_{s}}{\pi} \Gamma_{0}^{(1)}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \Gamma_{0}^{(2)}
$$

$$
+\left(\Gamma_{\pi}^{(0)}+\frac{\alpha_{s}}{\pi} \Gamma_{\pi}^{(1)}\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+\left(\Gamma_{G}^{(0)}+\frac{\alpha_{s}}{\pi} \Gamma_{G}^{(1)}\right) \frac{\mu_{G}^{2}}{m_{b}^{2}}
$$

$$
+\Gamma_{D}^{(0)} \frac{\rho_{D}^{3}}{m_{b}^{3}}+\Gamma_{L S}^{(0)} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\cdots
$$

$$
\begin{aligned}
\mu_{\pi}^{2} & =-\langle B| \bar{b}\left(i D_{\perp}\right)^{2} b|B\rangle \\
\mu_{G}^{2} & =-\langle B| \bar{b}\left(i D_{\perp}^{\mu}\right)\left(i D_{\perp}^{\nu}\right) \sigma_{\mu \nu} b|B\rangle
\end{aligned}
$$

$m_{b}^{k i n}$	$\bar{m}_{c}(3 \mathrm{GeV})$	μ_{π}^{2}	ρ_{D}^{3}	μ_{G}^{2}	$\rho_{L S}^{3}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$
4.553	0.987	0.465	0.170	0.332	-0.150	10.65	42.21
0.020	0.013	0.068	0.038	0.062	0.096	0.16	0.78

Gambino+Schwanda, PRD89 (2014) 014022

		Gambino+Schwanda, PRD89 (2014) 014022					
$m_{b}^{\text {kin }}$	m_{c}	μ_{π}^{2}	ρ_{D}^{3}	μ_{G}^{2}	$\rho_{L S}^{3}$	BR $_{c t \nu}(\%)$	$10^{3}\left\|V_{c b}\right\|$
4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86

3. Inclusive semileptonic decays: $\Gamma\left(B \rightarrow X_{u} \ell \nu\right)$

Problem: u hides under $c\left(V_{u b} \ll V_{c b}\right)$
Experimental Solution: kinematic region (phase space) inaccessible to charm New problem: not sufficiently inclusive, non-perturbative effects: "shape function"

QCD Calculation	Phase Space Region	$\Delta \Gamma_{\text {theory }}\left(\mathrm{ps}^{-1}\right)$	$V_{u b} \mid\left(10^{-3}\right)$
BLNP	$M_{X} \leq 1.55 \mathrm{GeV}$	$39.3{ }_{-4.3}^{+4.7}$	$4.17 \pm 0.15 \pm 0.12_{-0.24}^{+0.24}$
	$M_{X} \leq 1.70 \mathrm{GeV}$	$46.1{ }_{-4.4}^{+5.0}$	$3.97 \pm 0.17 \pm 0.14_{-0.20}^{+0.20}$
	$P_{+} \leq 0.66 \mathrm{GeV}$	$38.3_{-4.3}^{+4.7}$	$4.02 \pm 0.18 \pm 0.16_{-0.23}^{+0.24}$
	$M_{X} \leq 1.70 \mathrm{GeV}, q^{2} \geq 8 \mathrm{GeV}^{2}$	$23.8{ }_{-2.4}^{+3.0}$	$4.25 \pm 0.19 \pm 0.13_{-0.25}^{+0.23}$
	$M_{X}-q^{2}, p_{\ell}^{*}>1.0 \mathrm{GeV}$	$62.0{ }_{-5.0}^{+6.2}$	$4.28 \pm 0.15 \pm 0.18_{-0.20}^{+0.18}$
	$p_{t}^{*}>1.0 \mathrm{GeV}^{*}$	$62.0{ }_{-5.0}^{+6.2}$	$4.30 \pm 0.18 \pm 0.21_{-0.20}^{+0.18}$
	$p_{i}^{*}>1.3 \mathrm{GeV}$	$52.8{ }_{-4.3}^{+5.3}$	$4.29 \pm 0.18 \pm 0.20_{-0.20}^{+0.19}$
DGE	$M_{X} \leq 1.55 \mathrm{GeV}$	$35.3{ }_{-3.5}^{+3.3}$	$4.40 \pm 0.16 \pm 0.12_{-0.19}^{+0.24}$
	$M_{X} \leq 1.70 \mathrm{GeV}$	$42.0{ }_{-4.8}^{+4.8}$	$4.16 \pm 0.18 \pm 0.14_{-0.22}^{+0.19}$
	$P_{+} \leq 0.66 \mathrm{GeV}$	$36.9{ }_{-5.8}^{+5.5}$	$4.10 \pm 0.19 \pm 0.17_{-0.28}^{+0.37}$
	$M_{X} \leq 1.70 \mathrm{GeV}, q^{2} \geq 8 \mathrm{GeV}^{2}$	$24.4{ }_{-2.0}^{+2.4}$	$4.19 \pm 0.19 \pm 0.12_{-0.19}^{+0.18}$
	$M_{X}-q^{2}, p_{\ell}^{*}>1.0 \mathrm{GeV}$	$58.7{ }_{-3.2}^{+3.5}$	$4.40 \pm 0.16 \pm 0.18_{-0.13}^{+0.12}$
	$p_{\ell}^{*}>1.0 \mathrm{GeV}$	$58.7{ }_{-3.2}^{+3.5}$	$4.42 \pm 0.19 \pm 0.23_{-0.13}^{+0.13}$
	$p_{i}^{*}>1.3 \mathrm{GeV}$	$50.4{ }_{-3.0}^{+3.3}$	$4.39 \pm 0.19 \pm 0.20_{-0.14}^{+0.15}$
GGOU	$M_{X} \leq 1.55 \mathrm{GeV}$	$41.0{ }_{-3-8}^{+4.6}$	$4.08 \pm 0.15 \pm 0.11_{-0.21}^{+0.20}$
	$M_{X} \leq 1.70 \mathrm{GeV}$	$46.8{ }_{-3.6}^{+4.2}$	$3.94 \pm 0.17 \pm 0.14_{-0.17}^{+0.16}$
	$P_{+} \leq 0.66 \mathrm{GeV}$	$44.0{ }_{-6.3}^{+8.6}$	$3.75 \pm 0.17 \pm 0.15_{-0.32}^{+0.30}$
	$M_{X} \leq 1.70 \mathrm{GeV}, q^{2} \geq 8 \mathrm{GeV}^{2}$	$24.7_{-2.4}^{+3-2}$	$4.17 \pm 0.18 \pm 0.12_{-0.25}^{+0.22}$
	$M_{X}-q^{2}, p_{\ell}^{*}>1.0 \mathrm{GeV}$	$60.22_{-2.5}^{+3.0}$	$4.35 \pm 0.16 \pm 0.18_{-0.18}^{+0.85}$
	$p_{i}^{*}>1.0 \mathrm{GeV}$	$60.2{ }^{+2.5}$	$4.36 \pm 0.19 \pm 0.23_{-0.19}^{+0.09}$
	$p_{i}^{*}>1.3 \mathrm{GeV}$	$51.8{ }_{-2,3}^{+2,88}$	$4.33 \pm 0.18 \pm 0.20_{-0.11}^{+0.18}$
ADFR	$M_{X} \leq 1.55 \mathrm{GeV}$	$47.11_{-i .1}^{+5.2}$	$3.81 \pm 0.14 \pm 0.11_{-0.20}^{+0.18}$
	$M_{X} \leq 1.70 \mathrm{GeV}$	$52.3{ }_{-4.5}^{+5.4}$	$3.73 \pm 0.16 \pm 0.13_{-0.18}^{+0.17}$
	$P_{+} \leq 0.66 \mathrm{GeV}$	$48.9{ }_{-4.6}^{+5.6}$	$3.56 \pm 0.16 \pm 0.15_{-0.19}^{+0.18}$
	$M_{X} \leq 1.70 \mathrm{GeV}, q^{2} \geq 8 \mathrm{GeV}^{2}$	$30.9{ }_{-2-5}^{+3.8}$	$3.74 \pm 0.16 \pm 0.11_{-0.17}^{+0.16}$
	$M_{X}-q^{2}, p_{\ell}^{*}>1.0 \mathrm{GeV}$	$62.0{ }_{-5.8}^{+5.7}$	$4.29 \pm 0.15 \pm 0.18_{-0.19}^{+0.18}$
	$p_{i}^{*}>1.0 \mathrm{GeV}$	$62.00_{-8.9}^{+5.7}$	$4.30 \pm 0.19 \pm 0.23_{-0.19}^{+0.18}$
	$p_{i}^{*}>1.3 \mathrm{GeV}$	$53.3{ }_{-4.4}^{+8.1}$	$4.27 \pm 0.18 \pm 0.19_{-0.19}^{+0.18}$

BLNP: Bosch, et al, PRD 72 (2005)073006
DGE: "dressed gluon exponentiation" Andersen,
Gardi, JHEP 0601 (2006)097
ADFR: Aglietti, et al, Eur. Phys. J. C 59(2009)831 GGOU: Gambino, et al, JHEP 0710 (2007)058
4. Total width

Lifetimes, $\Delta \Gamma, \ldots$

- For B decay we cannot smear (integrate) over quark masses
- Neither can we compute for "deep euclidean" mass
- Maybe duality works if mass is large enough (large number of decay channels)?
- Test the idea by applying it to soluble model: QCD in 2-dims at large N_{c} (the 't Hooft model)

- In toy model: smear over mass
- Lorentzian-power smearing

$$
\frac{1}{\left(\left(x-M_{Q}\right)^{2}+1\right)^{n}}
$$

- Justified by OPE provided $n \geq 2$
- Corrections to OPE: order $1 / M_{Q}{ }^{2}$
- I conclude: Cannot trust OPE for total width unless asymptotically heavy quark

Lesson \#2: Expansions must be systematic (justified)

You may want to pull a rabbit out of the hat and ...

Corollary:

Should not use

- Lattice
- Sum rules
- SCET, QCDfac, pQCD
- Quark model
- AdS/QCD
on the same footing

BGL: Boyd et al, PLB353 (1995) 306; Nuovo Cim. A109 (1996) 863; NPB 461 (1996) 493;
PRD56 (1997) 6895-6911
Complementarity

Examples:

1. Lattice + z-expansion + data, exclusive semileptonic decays, $\quad B \rightarrow D \ell \nu$
form factors: $\quad\left\langle D\left(p^{\prime}\right)\right| V^{\mu}|B(p)\rangle=f_{+}\left(p+p^{\prime}\right)^{\mu}+\left(f_{0}-f_{+}\right) \frac{m_{B}^{2}-m_{D}^{2}}{q^{2}} q^{\mu}, \quad q=p-p^{\prime}, f=f\left(q^{2}\right)$
rate:

$$
\frac{d \Gamma}{d w}=\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{3}}\left|V_{c b}\right|^{2}\left(m_{B}+m_{D}\right)^{2} m_{D}^{3}\left(\sqrt{w^{2}-1}\right)^{3}\left(\eta_{\mathrm{ew}} \mathcal{G}(w)\right)^{2}
$$

z-expansion:

$$
f(w)=\mathcal{P}(z) \sum_{n=0}^{\infty} a_{n} z^{n}, \quad \sum_{n=0}^{\infty} a_{n}^{2} \leq 1, \quad z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}
$$

- Ingredients: Analyticity, crossing symmetry, unitarity
- $\boldsymbol{P}(z)$: computable (Blaschke, QCD)
- Physical region: $0 \leq z \leq 0.056$
- Not just a "parametrization": $n \geq 2$ terms give no more than 1%

Story in pictures:
HPQCD, PRD92 (2015) 054510

Caveat:
As good as the worst.
eg, MILC uses BGL for fit, else no control of theoretical errors.
2. CP asymmetries in mixing/decay: Penguin pollution revisited

$$
\mathcal{S}_{\pi \pi}=\sqrt{1-\mathcal{A}_{\pi \pi}^{2}} \sin 2 \phi_{2}^{\text {eff }}, \text { where } \phi_{2}^{\text {eff }}=\left(\phi_{2}+\kappa\right) \text { is not } \phi_{2}
$$

Gronau-London PRL65,338I(1990)

- Isospin analysis combines methods:
- Relations with $B \rightarrow \pi^{+} \pi^{0}$ and $B^{0} \rightarrow \pi^{0} \pi^{0}$ (same for $B \rightarrow \rho \rho$ after resolving polarization)

- Isospin breaking effects are small

Alternative
Snyder-Quinn PRD48,2139(1993)

- Time-dependent Dalitz analysis
- $B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ contains $\rho^{+} \pi^{-}, \rho^{-} \pi^{+}, \rho^{0} \pi^{0}$ and cross terms (interference)
- α / φ_{2} directly determined, $\rho^{ \pm} \pi^{0}$ and $\rho^{0} \pi^{ \pm}$may improve further (future)

Latest

Charles et al, arXiv:1705.02981

$$
\begin{aligned}
\alpha_{\text {dir }} \quad(\text { BaBar }) & :\left(86.6_{-8.3}^{+5.9}\right)^{\circ} \cup\left(174.8_{-3.8}^{+3.6}\right)^{\circ} \\
(\text { Belle }) & :\left(172.7_{-6.1}^{+6.5}\right)^{\circ}
\end{aligned}
$$

Anomalies I

Is there NP in Inclusive vs Exclusive semileptonic B decays?

- Longstanding tension in exclusive vs inclusive determination

$$
\begin{aligned}
&\left|V_{c b}\right|=(39.18 \pm 0.99) \times 10^{-3} \\
&\left|V_{c b}\right|=(\bar{B} \rightarrow D \ell \bar{\nu}) \\
&\left|V_{c b}\right|=(42.19 \pm 0.75) \times 10^{-3}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right) \\
&\left|V_{c b}\right|=(41.98 \pm 0.45) \times 10^{-3}\left(\bar{B} \rightarrow X_{c} \ell \bar{\nu}, \text { kinetic scheme }\right) \\
&\left(\bar{B} \rightarrow X_{c} \ell \bar{\nu}, 1 \mathrm{~S} \text { scheme }\right)
\end{aligned}
$$

- CLN used for exclusives

- CLN: $\Lambda_{\mathrm{QCD}} / m_{Q}$ in relations between form factors \Rightarrow uncertainties in $\left|V_{c b}\right|$ underestimated
- CLN not a good fit to data in $B \rightarrow D l v$

Bigi+Gambino, PRD 94(2016)094008

- Can NP accomodate?
- No Crivellin-Pokorski, PRL114(2015)011802
- Maybe Colangelo-De Fazio, PRD95(2017)011701
- not in SV limit, for any EFT operators Voloshin+Shifman, SNP47('88)511; BGM, PRD54(96)2081; BG unpub
example: RH currents with strength ϵ

$$
\begin{aligned}
\left|V_{c b}\right|_{\text {incl }} & =\left|V_{c b}\right|\left(1+\frac{1}{2} \epsilon^{2}\right) \\
\left|V_{c b}\right|_{D^{*}} & =\left|V_{c b}\right|(1+\epsilon) \\
\left|V_{c b}\right|_{D} & =\left|V_{c b}\right|(1-\epsilon)
\end{aligned}
$$

- Is tension from CLN? (Precision!)
- New Belle analysis released
- Unfolded data, full correlation matrix
- Large dataset, energy and angular distributions
- CLN: $\left|V_{c b}\right|=(37.4 \pm 1.3) \times 10^{-3}$
- Two independent analyses using BGL:
- Very consistent fits:

$$
\begin{aligned}
\left|V_{c b}\right| & =\left(41.7_{-2.1}^{+2.0}\right) \times 10^{-3} \\
\left|V_{c b}\right| & =\left(41.9_{-1.9}^{+2.0}\right) \times 10^{-3}
\end{aligned}
$$

Bigi et al, PLB769 (2017) 441-445
BG+Kobach, PLB771 (2017) 359-364

- Robust: different numerical inputs

Notes:
Fitted coefficients in ff expansion far from unitary bounds
Use $\eta_{\text {ew }}=1.0066 \quad$ Sirlin, NPB 196(1982)83
$\boldsymbol{\mathcal { F }}(1)=0.906 \pm 0.013 \quad$ FNAL/MILC PRD89(2014)114504

Anomalies I. 5

Is there NP in Inclusive vs Exclusive non-charm semileptonic B decays?

My guess: Systematics in $\left|V_{u b}\right|$ from inclusive determination $\underline{\text { badly }}$ underestimated

I already explained why

Anomalies II

Is there NP in B decays to τ ?

$$
\begin{aligned}
& " R_{D^{(*)}} \text { anomaly" } \\
& R_{D^{(*)}}=\frac{\operatorname{Br}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\operatorname{Br}\left(B \rightarrow D^{(*)} \ell \nu\right)}
\end{aligned}
$$

Excesses observed at more than 4σ

New: analysis of theory uncertainty

NP? Compete with SM-tree level!
Use EFT to characterize any model with heavy mediators:

$$
\begin{aligned}
& \quad \mathcal{L}_{\mathrm{eff}}=-\frac{4 G_{F} V_{c b}}{\sqrt{2}}\left[\left(1+\epsilon_{L}\right) \bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau} \cdot \bar{c} \gamma^{\mu} P_{L} b+\epsilon_{R} \bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau} \cdot \bar{c} \gamma^{\mu} P_{R} b\right. \\
& \left.+\epsilon_{T} \bar{\tau} \sigma_{\mu \nu} P_{L} \nu_{\tau} \cdot \bar{c} \sigma^{\mu \nu} P_{L} b+\epsilon_{S_{L}} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{c} P_{L} b+\epsilon_{S_{R}} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{c} P_{R} b\right]+ \text { h.c. }
\end{aligned}
$$

Narrow it down:
Alonso et al, PRL118 (2017) no.8, 081802

1. SM-EFT: no $\epsilon_{R} \quad \mathcal{L}^{\mathrm{eff}, \mathrm{NP}}=\frac{1}{\Lambda^{2}}\left(C_{l e u}^{(1)} Q_{l e q u}^{(1)}+C_{l e u}^{(3)} Q_{l e u}^{(3)}+C_{\ell q}^{(3)} Q_{\ell q}^{(3)}+C_{\ell e d u} Q_{\ell e d q}\right)$

$$
\begin{aligned}
Q_{l e q u}^{(1)} & =\left(\bar{\ell} e_{R}\right)\left(\bar{q}_{L} u_{R}\right)+\text { h.c. } & & Q_{l e q u}^{(3)}=\left(\bar{\ell} \sigma_{\mu \nu} e_{R}\right)\left(\bar{q}_{L} \sigma^{\mu \nu} u_{R}\right)+\text { h.c. } \\
Q_{\ell q}^{(3)} & =\left(\bar{q} \vec{\tau} \gamma^{\mu} q_{L}\right) \cdot\left(\bar{\ell} \vec{\tau} \gamma_{\mu} \ell_{L}\right) & & Q_{\ell e d q}=\left(\bar{\ell}_{L} e_{R}\right)\left(\bar{d}_{R} q\right)+\text { h.c. }
\end{aligned}
$$

2. B_{c} width: no $\epsilon_{P}=\epsilon_{S_{R}}-\epsilon_{S_{L}}$

Vector-current chirally suppressed by $\left(\mathrm{m}_{\tau} / \mathrm{m}_{\mathrm{b}}\right)^{2}$ (as in $\pi \rightarrow \mu v$) relative to scalar operator

Pseudoscalar needed for $R_{D^{(*)}}$ anomaly overwhelms total width
3. Angular distribution: constrains ϵ_{T}

To me: this suggests ϵ_{L}, i.e., $\mathrm{V}-\mathrm{A}$

Anomalies II. 5

Is there NP in B decay to τv ?

Plot from Ciezarek,et al, Nature 546 (2017) 227-233

Since WIN 2015, new Belle measurements have made significance go away.
... which is really interesting! because:
not only effects of (putative) NP differentiate tau's from electrons and muons
it differentiates between charm and up

And in both cases in the direction of amplifying effects for heavier fermions.
If so:

- The NP is tied to flavor!!
- Amplification ~ mass?

Smells like MFV+MLFV
(Minimal Flavor Violation + Minimal Lepton Flavor Violation)

- Scale of NP cannot be arbitrarily high; naively:

$$
\frac{1}{\Lambda^{2}} \gtrsim 0.4 \times \frac{\left|V_{c b}\right|}{v^{2}} \Rightarrow \Lambda \lesssim 2 \mathrm{TeV}
$$

$$
\begin{aligned}
& \text { Anomalies III } \\
& \text { Is there NP in } B \text { decays to } K^{(*)} \mu^{+} \mu^{-} \text {? } \\
& R_{K}=\left.\frac{\operatorname{Br}(B \rightarrow K \mu \mu)}{\operatorname{Br}(B \rightarrow \text { Kee })}\right|_{[1,6]} \quad\left\langle R_{K}\right\rangle_{[1,6]}=0.745_{-0.074}^{+0.090}(\text { stat }) \pm 0.036(\text { syst }) \quad \text { LHCb PRLL133(2014)151601 } \\
& B_{q}^{0} \rightarrow \mu \mu \\
& \text { Bobeth et al, PRL112(2014)101801 } \\
& \overline{\mathcal{B}}_{s \mu}^{\mathrm{SM}}=3.65(23) \times 10^{-9} \\
& \overline{\mathcal{B}}_{s \mu}^{\text {expt }}=2.9(7) \times 10^{-9}
\end{aligned}
$$

$$
\mathcal{L}_{\mathrm{SM}}^{\mathrm{eff}}=\frac{e}{4 \pi^{2}} G_{F} V_{t b} V_{t s}^{*} m_{b} C_{7} O_{7}, \quad O_{7}=\bar{s}_{L} \sigma_{\mu \nu} b_{R} F^{\mu \nu}
$$

$$
+G_{F} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi} C_{9(10)} O_{9(10)}, \quad O_{9(10)}=\bar{s}_{L} \gamma^{\mu} b_{L} \bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell
$$

$$
\text { (Reference: in SM } C_{9} \approx-C_{10} \approx 4.5 \text {) }
$$

NP: SM-EFT plus constraints from $B_{s} \rightarrow \mu \mu \Rightarrow \underline{\text { no scalar or tensor operators } \quad \text { Alonso, etal, PRL113(2014)241802 }}$
Left with vector operators: $C_{9(10)} \rightarrow C_{9(10)}+\delta C_{9(10)}$; additionally

$$
+G_{F} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi} C_{9(10)}^{\prime} O_{9(10)}^{\prime}, \quad O_{9(10)}^{\prime}=\bar{s}_{R} \gamma^{\mu} b_{R} \bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell
$$

- These are $\delta C_{i}=C_{i}{ }^{\mathrm{NP}}$
- Arrows: increasing δC
- Dots: intervals of $\Delta(\delta C)=0.5$
- Central Value $\left(R_{K}, R_{K^{*}}\right)$ on blue line
- $\operatorname{Not} C^{\prime}{ }_{9}, C^{\prime}{ }_{10}$, i.e., not $\mathrm{V}+\mathrm{A}$
- As with tau anomalies: V-A !!

Dirty observables, mostly from angular distribution in $B \rightarrow K^{*} \mu \mu$ (e.g., P^{\prime}), had already suggested $\delta C_{9} \approx-1$. So combine all $b \rightarrow s$ observables:

The shape of NP:
An attractive scenario

$$
\delta C_{9}=-\delta C_{10}=-0.5
$$

My next slide is very busy

But it is the last
and not as bad as
\longleftarrow this

NP Models?

Large and growing literature. Approaches for $b \rightarrow s$ anomalies:

- Long distance, lighter than EW

Sala+Straub, 1704.06188; Bishara et al, 1705.03465

- Non-decoupling, EW scale
- SM-EFT analysis does not necessarily apply
- Loop mediators
- Composites, partial composites
- Short distance (most popular)

Arnan et al, 1608.07832; Gripaios et al, JHEP1606(2016)083; Kamenik et al, 1704.06005 e.g., Gripaios et al, JHEP1505(2015)006

- Z^{\prime} :
- LUV: couple (typically) to $L_{\mu}-L_{\tau}$, strength $g_{\mu \mu}$
- FCNC: non-diag coupling to $\bar{s} b$, strength $g_{b s} ; B_{s}$-mixing $\Rightarrow g_{b s} / \mathrm{M}_{\mathrm{Z}^{\prime}}<5 \times 10^{-3} \mathrm{TeV}^{-1}$
- B-anomalies: $g_{\mu \mu} / \mathrm{M}_{\mathrm{Z}^{\prime}}>1 /(3.7 \mathrm{TeV})$, or $\mathrm{M}_{\mathrm{Z}^{\prime}}<13 \mathrm{TeV}$ for $g_{\mu \mu}<\sqrt{ }(4 \pi)$
- Need to address LFV (e.g., $\mu \rightarrow \mathrm{e} \gamma$) and other quark FCNC
- Leptoquarks
- Scalars: no $\operatorname{SU}(3)_{c}$-triplet, $\mathrm{SU}(2)_{w}$-singlet $(Y=7 / 6,1 / 6,-1 / 3,-4 / 3)$ works (either $\delta C_{9}=+\delta C_{10}$ or give $C_{9(10)}^{\prime}$)
- Scalars: Unique $\mathrm{SU}(2)_{\mathrm{w}}$-triplet ($\mathrm{SU}(3)_{c}$-triplet), $Y=-1 / 3$, gives right pattern
- Vectors: $\mathrm{SU}(3)_{c}$-triplets, $\mathrm{SU}(2)_{w}$-singlets with $Y=5 / 6,-1 / 6,-5 / 3$, don't work either
- Vectors: both $\mathrm{SU}(2)_{\mathrm{w}}$ singlet and triplet (color triplets) with $Y=2 / 3$ give right pattern
- Some short distance models address also tau anomalies

Is quark and lepton flavor fundamental to the NP?

* No, small numbers look fine tuned just as in CKM model
* Yes, this is a window to flavodynamics, e.g., gauged flavor

No need for conclusions

The End

