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Motivation — why is supernova detection via
neutrinos/antineutrinos important?

Uz +e —vUz+e [ES
Main advantages

* Advanced warning of a Supernova, potentially a few hours.
Allows to inform astrophysical community to be on guard

* Directionality capabilities can
inform on exactly where to look

e Neutrino and antineutrino can S B AT I::l:itcope
probe different period of the ar ok e here <

collapse, tagging flavors can
inform on core collapse physics
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Taken from Irene Tamborra, Supernova Neutrinos:
New Challenges and Future Directions, Neutrino 2016
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What is this talk about? What is it not about?

This talk describes a Gedanken experiment

interaction channel

* Are there advantages to using water-based liquid

scintillator compared to pure water? Ve 116_0_:*_16 i)* + E'/E.f)cS%NC]
V:I) € V:z: e
e Can we use supernova-induced radio-isotopes to Ve +16 0 516 F 4 e~ [CC]
. . . Ue +190 =9 N 4 €™ [CC]
better separate antineutrino from neutrino

Ue +p — n+ et [IBD]

interactions? total rate

This talk is not,
* Anin-depth review of any specific water or
wbls detector
* A review of supernovae detectors (liquid
Argon, ...)
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Current and future detector technology — Pure Water SK-Gd/HK

Super-Kamiokande + Gadolinium

Approval from SK and T2K to empty tank in 2018 for
commissioning

TO = Start refurbishment of SK detector

T1 = Add first gadolinium sulfate (0.000% — 0.002% — 0.020%)

T2 = Full loading of gadolinium sulfate (0.20%)

Hyper-Kamiokande

W,
i

@

STEP # ——

1st year 20XX | | 20XX | | 20XX | | ZOf(X ‘

Leak repair work(~5 months)

2,3 |Fill pure water (~2months)

Circulate pure water until get good water transparency (~
2months)

5,6 |Load to 0.002% Gd,(SOy); (1ton) (~1 month)

Two tank — staging strategy
Each tank:
260 kton total, 188 kton fiducial mass

7 |Load to 0.02% Gd(SO4)s(10ton) (~1 month)

7  |Water transparency stabilized (~4 months)

7  |Observation with 0.02 % Gd,(SO.); ? [ [ — ' l |

8 |Load to 0.2% Gdy(S0O,)3(100 ton)(~2 months) | \ J—

9 |Observation with full loading ‘i ﬁj _
TO Tl TZ

Table provided by M. Vagins

Neutron capture on Gd

(8 MeV of y’s, ~4 MeV visible)

40000 50-cm high QE PMTs 4
74 m 2 x 60 m high B e/ y
\4
1800 mwe oveburden \
FY 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 Q i~
2015 ’ y
y L/
Suveyjidetailed design Cavity excavation | Tank donstrudtion | OPeration @
Accegstunnéls Sensor ' R
»
Photosensor development h prpduction Water
filling 7y y

Maximize detector performance — less mass than originally discussed

Ed Kearns — Boston University — BLV2017
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Current and future detector technology — THEIA

A realisation of the Advanced Can we separate Cherenkov/Scintillation for directionality?
Scintillation Detector Concept (ASDC)

" RAT-PAC Simulation of
a v, CC quasi-elastic
event in THEIA.
Cherenkov and
scintillation light
visible.

* Large-scale detector (50-100 kton) ‘.,anmImlIIIIIIIIIIlIIIIIHIIt.-.t;m.
e WhbLS target

® Fast, high-efficiency photon detection
with high coverage

LALJ LU ALY AR AL L L

® Deep u/ground (Pyhasalmi, Homestake)

® |sotope loading (Gd,Te, Li...)

® Flexible! Target, loading, configuration

aDetecmr image product of RAT-PAC

= Broad physics program!

Concept paper - arXiv:1409.5864

Can we design with adequate absorption length?

180
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£ 120 i
g |
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g Water-based Liquid Scintillator
% 80 Water-like Qil-like
2 « >70%H20 « Anew loading
S 60 + Cherenkov + technology for
< Scintillation hydrophilic
£ 40 + Cost-effective elements
<
= 20 i
Scintillatc?r § D+, Daya Bay)
0 ! . . - = ] Hpade
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. . Brookhaven Sclence Associat Photon/MeV BROONHAVEN
images from G.D. Orebi Gann FroST2016 w2014 Winfang Yen, BN ‘
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Current and future detector technology - WATCHMAN

Technology Demonstration:

Detect the ON/OFF power cycle of Phase |: Observe reactor antineutrinos

a single reactor: with Gadolinium-doped water

« at 10-25 km standoff with a Phase Il: Observe reactor antineutrinos
kiloton-scale Gd-H20 detector with a WbBLS fill

HARTLEPOOL REACTORS (UK) WATCHMAN DETECTOR PERRY REACTOR (US)

Main Project Objective:

e 3500 tons, ~3000 photomultiplier tubes

e Water Cherenkov detector, doped with
gadolinium =7 ; ;-

o Detects antineutrinos via the process imorkiils i Niigd © 2012 TerrgMetfics
vip=et+n - -"..\ ‘lmgu:‘o:w'-"

A 1-kton volume is a good test case for spatial background characterizing studies
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Note on Water-Based Liquid Scintillator (WbLS) potential and
drawbacks compared to pure/Gd-doped water

Advantage: enhanced positron detection (light from annihilation gammas)

Ve +e —vz+e [ES]
we Ve +p — n+ et [IBD]

water/WbLS . De n

Drawback: Pointing resolution
degradation in WbLS. Relies on
Cherenkov/Scintillation separation
effectiveness Advantage: 1°F/*°0 detection (Q-Value of 1.732 MeV )
ve +100 =1 F + 7, [CC]

150 in SK Water, more or less invisible 16p 150 4 p,

At ~6 p.e./MeV, light collected: [0-10*] pe 150 15 N 1ot 1y

150 in WbLS (4% Scintillator), a clear signal

At ~40 p.e./MeV, light collected: [41-108] pe

150 also is present in Neutral Current interactions

*Breaks the Smy rule, i.e.: 10 p.e. required for any ’ Ve
Cherenkov detector to work from a reconstruction point )
M. Bergevin, WIN2017
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Neutron emitting interaction dominate and will probe the

Supernova temperature

Neutral current (NC) events should produce
neutrons in ~55% of the visible interactions.

All of the neutron emitting NC also produce
150

NC (~5%)

~30% of all NC should produce a single
neutron with no associated gamma. Could
potentially cause mis-reconstruction of IBDs

Minor WbLS advantage: Better energy

TN
. 0
resolution to probe SN temperature =
>
TABLE 1. Total and partial cross sections for », and 7, induced reactions on 0, calculated 0
for a Fermi-Dirac neutrino spectrum with temperature and chemical potential (77 = 8 MeV, 6
u = 0) (upper part) and (T = 6.26 MeV, u = 3T) (lower part). ~—
Reaction o (107%2 cm?) Reaction ot (1074 cm?) ie
C
10(v,, v))X 5.90 1%0(7,, 71)X 448 o
160(v,, v/ p)PN 3.75 160(p,, . p) PN 293 ‘0
10(v,, /)10 1.76 160(w,, »'n)1°0 129 |T=8 MeV
%0(v,, v py) "N 141 160(v,, 7. py)°N 1.09
160(v,, v/ny)0 0.37 160(5,, v ny)0 0.28
10(v,, /)X 3.08 160(p,, 71)X 2.50
160(v,, v/ p)PN 2.02 160(p,, 7' p)’N 1.69
150(v,, v/n)1°0 0.90 160(p,, 7'n)1°0 0.70 |T=6.3 MeV
10(v,, v/ py) PN 0.72 150(7,, 7' py)°N 0.59
1%0(v,, v/iny)0 0.18 1%0(7,, 7.ny)0 0.14

==

7 Y —
1504n R 7
15N-+-p

)

IBD (~90%)

25

Langanke, Vogel and Kolbe PhysRevLett.76.2629




Supernova interactions and the power of IBD tagging

visible energy (MeV)

visible energy (MeV)

WbDLS (~40 pe/MeV in WATCHMAN, 4% scintillator*)

ght to reach PMTs |

il e

0 10% 10°
time since parent interaction (s)

Water (~9 pe/MeV WATCHMAN)
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a Rat-pac WATCHMAN simulations

*Arxiv.1409.5864v3

Spectral prompt shape and total rates fora T=4

3 800 MeV SN, at 10 kpct
]
c 700 interaction channel Niag—0% Niag—0% Ntag—90%  Ntag—90% Dtag—100% Ntag—100%
3 - (%) (evts/kton) (%) (evts/kton) (%) (evts/kton)
[3) - e +180 =18 0% + 7, [NC] 5 12 22.3 10.9° 39.0 10.8F
600 | Pz +e” — Uy +e [ES] 3.0 7.2 14.8 7.2 26.1 7.2
- ve +1€0 = F + e~ [CC] 2.5 6.0 12.3 6.0 21.8 6.0
5001 7e +100 519 N +let [CC] 15 3.6 7.4 3.6 13.1 3.6
- De +p — n+et [IBD) 88 211 43.2 21.1 0 0
C total rate 239.8 188 27.6
400+
- —— ES
300 —— IBD
= 1 1 -
- v, '°0 — '°F " (CC)
C — 1 1
200 v, '°0 - °N e* (CC)
100
0 ~ =1
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+“—> e* kinetic energy (MeV)
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Daughter ®N and °F displacement due to diffusion in water

volume

Diffusion length
L =Dt

reaction 7 (s) L (m)

n capture Gd-HoO 3 x 107> 0.02
n capture HoO 2x107*  0.07
16N diffusion 10.3 0.48
16F diffusion 176.3 1.98

)

= 22000

~

a

16N
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Function taken from SNO-STR-96-013, SNO
technical document
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parent-daughter spatial separation (m)
Using water diffusion
properties. WbLS diffusion
properties are as of yet
unknown, but assumptions are
that the material will have a
lower diffusion coefficient

Assumes no constantly running

recirculation
10



counts [a.u.]

All the ingredients for a multivariate analysis

Neutrino Average Energy

H Provide neutrino info . .
Event generation < v purst Acretion Coning
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Energy-time response
Large fluxes. Smaller fluxes.

Evaluate spatial drift and combination Large Ve luminosity peak

: Large ‘7, =7} flux difference.  Small 7, —(&), flux difference.
WAhLS (~40 pe/MeV in WACTHMAN) probabilities

Remove tagged events

SN direction
reconstruction

Daughter spatial drift
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Likelihood method models
are being implemented
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Take-home message

WhbLS allows more precise characterization of a Supernova via
sensitivity to 1°O (produced in certain CC and NC interactions)

What was this about?
* Are there technical advantages to using water-based liquid scintillator
compared to pure water + Gd?
* WHbLS allows the observation of the 1°F chain, allowing to identify
that a CC or NC interaction has occurred.

* Can we use supernova-induced radio-isotopes to better isolate neutrino
from antineutrino interactions?
* Yes. WbLS will be more efficient at tagging antineutrino originating
16N events, resulting in a cleaner neutrino sample

e This is a still a fairly new technology. Further measurements are needed,
such as for mean absorption, demonstration of Cherenkov/Scintillation
separation, diffusion properties of WbLS.



Backup: Note on cleanliness targets

Since this is a new technology, there are unknowns on the purification levels
one can achieve with WbLS

UC Davis is showing promising preliminary results with nano-filtration

WbLS Nanofiltration Conference of Science at SURF
Teal Pershing (UC Davis) Material Science and LBT

SPECTROPHOTOMETER MEASUREMENTS

* Absorption decreased in permeate at A > 300 nm relative to WbLS
* Absorption peak still present at ~225 nm
Peak is consistent with an absorption peak in PRS

Could indicate trace surfactant is still going through Typical WbLS spectra using NFW filter (samples taken at the 2 hour mark)
the nanofilter with water

‘¥ 1% WbLS
* Peak heights at ~¥225 nm indicate

the operating conditions’ impact on

LS/water separation 3
Cooler feed and lower pressure: lowest

3.50

absorption

— 100 psi, hot water

— 150 psi, room temp.

permeate flow, but lowest total 25 100 bsi. room tem
absorption 5 psl, P-
* However, no permeate is completely 15

free of surfactant/scintillator
Question to ask: does separating
whatever components are in the
permeate affect WbLS’s light yield?
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