Double Chooz Measurement of θ₁₃ and Beyond

Thiago Sogo-Bezerra, on behalf of **the Double Chooz Collaboration**

The 26th International Workshop on Weak Interactions and Neutrinos @ UC Irvine June 20th, 2017

Neutrino Oscillations and θ_{13}

3ν Oscillation Status (Marrone et al)

Oscillation parameters: θ_{13} , θ_{12} , θ_{23} , Δm^2 , δm^2 , δ_{CP}

- Remarkable precision, even a hint for δ_{CP}

3ν Oscillation Status (Marrone et al)

Knowledge on 3v oscillation model depends on θ_{13}

 θ_{13} vs δ_{CP} \rightarrow Maximal CP? θ_{13} vs "octant" \rightarrow do we know anything?

 θ_{13} measurement (value & error) w/ critical implication ex. Predict CPV correct?

Double Chooz collaboration

Double Chooz experiment

Chooz Reactors 4.27GW_{th} x 2 cores

edf

 $\overline{\nu_{e}}$

Near Detector L = 400m 10m³ target 120m.w.e. Since 2015

Far Detector L = 1050m 10m³ target 300m.w.e. Since 2011

Precision measurement of θ_{13}

- Direct measurement of θ_{13} from energy dependent deficit
 - No parameter degeneracy/matter effects
- Suppression of systematic uncertainties (<< 1%) with multi-detectors at different baselines

Survival probability of reactor neutrinos

$$P\left[\overline{v_e} \to \overline{v_e}\right] \cong 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{3_1}^2 L}{4E} \frac{1}{j}\right) \dots$$

Simple two flavor oscillation formula is valid at L ~ 1km

• Reactor θ_{13} (most precise) used as reference in current and future projects which aim to search for CP violation and mass hierarchy in neutrino sector.

Double Chooz Detectors

Outer Veto (OV) Plastic scintillator strips

Inner Detector (ID) v-target (NT)

Gd loaded liquid scintillator (10m³)

γ-catcher (GC)

Liquid scintillator (22m³)

Buffer

- Mineral oil (110m³)
- 390 10-inch PMT

Inner Veto (IV)

- Liquid scintillator (90m³)
- 78 8-inch PMT

Single detector analysis

Bugey4 (virtual) provides reactor flux normalization

Reactor B1Q Q B2

FD-I 461days

Detection Mode

IBD coincidence condition

Delayed signal energy Correlation time Correlation $4 < E_{vis} < 10 \text{MeV}$ $0.5 < \Delta T < 150 \mu \text{sec}$

Correlation distance $\Delta R < 100 cm$

⇒ Remaining BG

Cosmogenic β-n emitter: Fast neutron: Stop-μ: Accidental coincidence: ⁹Li $\rightarrow \alpha + \alpha + e + v + n$ $n + p \rightarrow p + n$ $\mu \rightarrow e + v + v$ e.g. γ + spallation n

Prompt

Oscillation fit: rate + spectrum shape

- Background and other uncertainties constrained by shape information
 - $\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029}$
- Unexpected spectrum distortion observed at 4-6MeV
 - ✓ Negligible impact to θ_{13} measurement
 - Magnitude of excess proportional to reactor power
 - Same distortion later confirmed by RENO, Daya Bay and n-H capture in DC

Analysis improvements

- Detector and background uncertainties are suppressed to per-mille level by analysis improvements
 - Reactor flux uncertainty (1.7%) dominant in last FD-only analysis
- ⇒ Reactor flux and detection systematics to be suppressed with two detectors

Multi-detectors analysis

Bugey4 (virtual)

Reactor B1

ND (multi-detectors)

DC: most iso-flux setup ⇒ reactor flux error highly suppressed with multi-detectors

FD-I (single detector) 461days + FD-II (multi-detectors) 212 days

Google Earth

The Largest Single θ_{13} Target

IBD (Gd)

Target: ~8t (smallest θ_{13} target)

The Largest Single θ_{13} Target

IBD (Gd)

Target: ~8t (smallest θ_{13} target)

Target: ~30t (largest θ_{13} single detector target)

IBD (Gd+H)

Detection Mode

ANN Accidental BG Regection

IBD (signal) (correlated)

Accidental BG (Random)

(i.e. longer Δt , ΔR)

18

IBD(Gd+H) definition: Multi-variable cut

Energy Spectrum IBD(Gd+H) Selection

IBD (Gd+H) and IBD (Gd) vs Time

IBD(Gd) ≤50day-1@ FD $σ^{\text{stat}} = 0.56\%^{\text{now}}$

IBD(Gd+H)≤140day⁻¹@ FD σ^{stat}=0.35%^{now}

[⇒~0.2%^{stat} final]

BG rejection: $\Delta t(e^+:n)$ view

Systematic error evolution

proton# (full volume) is largest uncertainty

(beyond DC-IV) dedicated campaign proton# (analysis⊕hardware→ even decommissioning)

(R+S Fit) All Detector Spectra

θ₁₃ fits (R+S & RRM) fold all information simultaneous

- MD(FD-II:ND)⊕SD(FD-I:FD-II:ND) [SD uses MC→ minimal impact]
 ⇒ MC-e+ non-linearity model [NT vs NT⊕GC volume]
 - each BG (⁹Li measurement ≥7MeV) ⊕ reactor-OFF constraint
 full flux error w/ and w/o Bugey4 constraint
 all correlations energy⊕reactors⊕detectors⊕backgrounds

θ_{13} R+S Fit Result

 $sin^{2}(2\theta_{13})^{R+S} = (0.119 \pm 0.016)$ with χ^{2} / ndf: 236.2 / 114

(marginalised over $\Delta m^2 = (2.44 \pm 0.09) eV^2$

Parke et al. arXiv:1601.07464)

θ_{13} Fit Validation

(spectral distortions cancel across ND:FD)

Comparison with others

(beam "handicapped" by unknowns(δ_{CP}) / uncertainties) reactor- θ_{13} key to solve CP-violation & mass hierarchy \rightarrow redundancy fundamental

(reactor- θ 13 experiments work together to resolve)

Prospects to the Future

DC largely dominated by proton# \rightarrow improvement possibility?

collaboration is committed improve to resolve (internally & together with DYB+RENO)

Beyond θ_{13}

Reactor spectral characterization

High Precision Reactor-IBD Rate (world ref. Bugey4)

(Reactor Thermal Power $\sim 0.47\%$ @ Chooz)

(2014) Reactor- θ_{13} found spectral distortions

$1\sigma \text{ of } \delta(\text{flux}) \rightarrow \pm 3\% \text{ (DYB & RENO) & } \pm 1.7\% \text{ (DC} \oplus \text{Bugey4)}$

DC first paper on the subject @JHEP 1410 (2014) 086

3 different experiments in agreement (not trivial→ not identical fuels)

MAIN ISSUE features >10(flux) ILL-based prediction uncertainties = error is (likely) underestimated (hard to believe otherwise)

QUESTION why Bugey3 data did not see it? (best world shape reference) [DC@B3 working to reconcile]

⇒LIMITATION? our ability to address v(sterile) hypothesis with reactor-data (single detector)

Shape Distortion Comparison (DC Near)

DC: 210 000 events / DB: 1.2 million events / Reno: 280 000 events

- Consistency between Double Chooz and Daya Bay results !
 - \rightarrow **not trivial**: θ_{13} correction, background, energy, ...
- Due to the normalization used, RENO points are close to 1 up to 4 MeV
- But good agreement with RENO when area are normalized to 1 for E < 4.5MeV
- Some discrepancy remains with RENO around 5 MeV:
 - → DC and DB reactors are similar (Areva), not Reno reactors
 - \rightarrow Reactor fuels? Other?

Distortion analysis with ND rate+shape

test the existence of features not biased by shape-only assumption (i.e. smaller errors)

shape-only≈Bugey4 (consistency of Bugey4?)

non-statical features
•which is deficit?
•which excess?
•which is OK?
⇒ less evident!!

careful analysis before stating the "trouble region" is bump problem really? (maybe no bump whatsoever)

(bias question⇒bias answer)

DC-IV Preliminary

DC first results with new IBD(Gd+H+C) selection [big challenge]

- **largest-single-** θ_{13} **-target now** [statistics comparable to ~2x DYB-FD's & 2x larger than RENO]
- · DC will NOT be limited by statistics: systematics challenge
- conservative systematic scenario adopted → expected to improve (ongoing work)

DC-IV PRELIMINARY results

- new sin2(2θ13) = (0.119±0.016) [many cross-checks: all consistent all across to our best ability]
 - non-statistical discrepancy @ ~2.2 σ → must address internally & reactor- θ_{13} forum
- new reactor spectrum characterization (rate⊕shape) major improvement
 - most precise reactor normalization & rate⊕shape analyses: intriguing spectral distortions
 - DC-ND superseding world best reactor references Bugey4 & Bugey3
- DC questions ILL-based prediction error budget: limitation to reactor single-detectors to yield (some) <u>fundamental particle physics issue</u>: neutrino(sterile) hypothesis?

DC world best IBD-directionality measurements → still improving!

O

0.0.0.0.0.000

Backup

Double Chooz Read-out

Prompt energy of ²⁵²Cf data

• 252 Cf emits ~10 γ with 1MeV in average.

Comparison of FD and ND data with ²⁵²Cf at the center of detector

Scintillator accumulates on Buffer top

most μ-decay @ rest (Michel-e[±]) rate(ND/FD)~100x

stopped-µ (all) contamination → negligible!! (ND≈FD after rejection)

Background Vetoes

Precious reactor-off data

Rejection Power estimation (total and per-veto) IBD(Gd+H): 158x (6:1000 selection) & efficiency \approx (95.00 \pm 0.03) [IBD(Gd): 11x (9:100 selected)]

IBD(Gd+H) allows BG strategy validation of IBD(Gd) by an one extra order of magnitude

BG-model inclusiveness validation [next]

Remaining BG Measurement

BG model: $BG(\Sigma) = BG(accidental) + BG(fast-neutron) + BG(^{\circ}Li)$

$\sigma(BG)/Signal \approx 0.2\%(FD)$

BG(acc): via OFF-time coincidence [$\sigma(BG)/S \rightarrow \sim 0\%$] BG(fast-n): via µ-detector tagging (IV checked by OV) up to 100MeV [$\sigma(BG)/S$: ~small] BG(⁹Li): via µ-spallation correlated production (≤50% vetoed) [$\sigma(BG)/S$:~dominant]

 $BG(\Sigma)^{exclusive} \approx BG(reactor-OFF)^{inclusive} \Rightarrow BG-model is complete$

(implies BG(stopped-μ), BG(¹²B), BG(BiPo), BG(multi-captures): all negligible!!)

Reactor spectal distortions (shape only)

shape-only analysis (i.e. norm integral=1

non-statical features
lowest bin: high?
deficit [2,4]MeV
excess [4,6]MeV

(non-trivial) ND≈FD: same features (possible combination)

note significance and interpretation depends highly on the normalization strategy ⇒shape-only likely incomplete (no physical motivation)

Features scaling with reactor

