Run: 280464 Event: 517140616 2015-09-28 04:21:57 CEST

Cross section and couplings measurements with the ATLAS detector for the 125 GeV Higgs Boson

Hannah Herde (Brandeis University), on behalf of the ATLAS Collaboration

Hannah Herde (Brandeis)

H→ZZ*→2µ2e

In this talk:

★ SM predictions for 125 GeV Higgs

★ Cross sections and couplings

• $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$, $H \rightarrow WW^* \rightarrow \ell \vee \ell' \vee$

 \star Searches for t \overline{t} H production and H \rightarrow b \overline{b} decay

Higgs Expectations at $\sqrt{s} = 13$ TeV

Hannah Herde (Brandeis)

Production modes

Observed production modes: ggF, VBF

Hannah Herde (Brandeis)

Higgs decay channels

<u>JHEP (2016) 2016: 45.</u>

Situation at end of Run I

Anatomy of ATLAS

ATLAS-CONF-2016-067

$\mathscr{B}(m_{\rm H}=125~{\rm GeV})=0.23\%$

Hannah Herde (Brandeis)

ATLAS-CONF-2016-067

$H \rightarrow \gamma \gamma$ analysis strategy

★ 105 < m_{yy} < 160 GeV

- ★ $p_T y^1 > 0.35 m_{yy} \& p_T y^2 > 0.25 m_{yy}$
- ★ |η| < 1.37 or 1.52 < |η| < 2.37
- ★ Signal extraction from m_{xx} spectrum, modeling background with analytic function
- ★ Neural network for vertex discrimination to improve mass peak resolution

Bkg	%
88	79%
γj	19%
jj	2.5%

$H \rightarrow \gamma \gamma$ fiducial volumes

- ★ "Baseline" fiducial volume = fiducial inclusive region
- ★ Two more volumes defined to improve VBF, VH sensitivity

	diphoton baseline	VBF enhanced	single lepton
Photons	$ \eta $	< 1.37 or $1.52 < \eta < 2.37$	
	$ $ $p_{\mathrm{T}}^{\gamma_1} >$	$\sim 0.35 m_{\gamma\gamma} \text{and} p_{\mathrm{T}}^{\gamma_2} > 0.25 m_{\gamma\gamma}$	γ
Jets	-	$p_{\rm T} > 30 {\rm GeV}$, $ y < 4.4$	-
	_	$ m_{jj} > 400 \text{GeV}, \Delta y_{jj} > 2.8$	-
	_	$\left \Delta\phi_{\gamma\gamma,jj}\right > 2.6$	_
Leptons	-	_	$p_{\rm T} > 15 {\rm GeV}$
			$ \eta < 2.47$

Fiducial cross sections

★ Fiducial volume mimics selection from reconstruction to minimize model dependence

★ Account for trigger, reconstruction, identification efficiencies and resolution effects with bin-by-bin unfolding assuming $m_{\rm H} = 125.09$ GeV

★ Signal extracted with unbinned likelihood fit to m_{yy} spectrum in bins of observables

Fiducial region	Measured cross section (fb)	SM prediction (fb)	
Baseline	$43.2 \pm 14.9 (\text{stat.}) \pm 4.9 (\text{syst.})$	$62.8_{-4.4}^{+3.4}$	$[N^{3}LO + XH]$
VBF-enhanced	$4.0 \pm 1.4 (\mathrm{stat.}) \pm 0.7 (\mathrm{syst.})$	2.04 ± 0.13	[NNLOPS + XH]
single lepton	$1.5 \pm 0.8 ({\rm stat.}) \pm 0.2 ({\rm syst.})$	0.56 ± 0.03	[NNLOPS + XH]

ATLAS-CONF-2016-067

Differential cross sections

★ Observables: p_T^{yy} , $|y_{yy}|$, $|cos\theta^*|$, $\Delta\phi_{jj}$, N_{jets} , m_{jj} , $p_{T,J1}$

★ Probing kinematics, spin, parity, production mode

$H \rightarrow \gamma \gamma$ event categories for couplings

$g \xrightarrow{f} t$		$\begin{array}{c} q & & & & & q \\ & & & & & & \\ & & & & &$	g 、 g 、	ggF	н
 2 categories: 1) ≥1 top decays leptonically 2) Both tops decay hadronically 	5 categories: 1) Dilepton: ZH, $Z \rightarrow \ell \ell$ 2) One lepton: WH, $W \rightarrow \ell v$ 3) VH E_T^{miss} : ZH, $Z \rightarrow vv, W \rightarrow \ell v$ (no ℓ found)	2 categories: • ≥2 hadronic jets • 2 leading jets define VBF system • $\Delta \eta_{jj} > 2$ • $ \eta_{xx} - 0.5(\eta_{j1} + \eta_{j2}) _{<5}$ • BDT	4 categ • Sepa acco expe resol	pories: arated ording to ected <i>m</i> ution ar < 70 GeV	o sy nd S/B > 70 GeV
	VH \rightarrow hadrons, split with BDT	1) VBF tight: high BDT score	< 0.95	central low- <i>p</i> _{Tt}	central high- <i>p</i> ⊤t
	4) VH hadronic tight5) VH hadronic loose	2) VBF loose	> 0.95	forward Iow- <i>p</i> _{Tt}	forward high- <i>p</i> _{Tt}

 \star 13 exclusive categories, split with increasing expected production cross section

\bigstar Then grouped to measure couplings

Hannah Herde (Brandeis) WIN201

Simplified template cross sections

- ★ Assuming $m_{\rm H} = 125.09 \pm 0.24 \, {\rm GeV}$
- ★ Restricted to $|y_{\rm H}| < 2.5$
- ★ σ_{VHlep} × ℬ(H→γγ) from leptonic decays of vector bosons
 - W→ℓv
 - $Z \rightarrow \ell \ell \ (\ell = e, \mu)$
 - Z→vv
- ★ σ_{VHhad} x 𝔅(H→ɣ𝑔) from hadronic decays of vector bosons

 $\sigma_{ggH} \times \mathcal{B}(H \to \gamma \gamma) = 63 ^{+30}_{-29} \text{ fb}$ $\sigma_{\text{VBF}} \times \mathcal{B}(H \to \gamma \gamma) = 17.8 ^{+6.3}_{-5.7} \text{ fb}$ $\sigma_{\text{VHlep}} \times \mathcal{B}(H \to \gamma \gamma) = 1.0 ^{+2.5}_{-1.9} \text{ fb}$ $\sigma_{\text{VHhad}} \times \mathcal{B}(H \to \gamma \gamma) = -2.3 ^{+6.8}_{-5.8} \text{ fb}$ $\sigma_{t\bar{t}H} \times \mathcal{B}(H \to \gamma \gamma) = -0.3 ^{+1.4}_{-1.1} \text{ fb}$

More on simplified template XS in LHCXSWG YR4 Ch III.2

ATLAS-CONF-2016-067

Coupling measurements

Hannah Herde (Brandeis)

ggł

g Ull

36.1/14.8 fb⁻¹

ATLAS-CONF-2017-032, ATLAS-CONF-2016-079

$H \rightarrow ZZ^* \rightarrow 4\ell$

Narrow peak on smooth background; Small statistics S/B ~ 2, $\mathscr{B}(m_{\rm H}=125~{\rm GeV}) = 0.0124\%$

Hannah Herde (Brandeis)

36.1/14.8 fb⁻¹

$H \rightarrow ZZ^* \rightarrow 4\ell$ analysis strategy

★ Loose lepton ID to maximize efficiency and acceptance

★ 115 < $m_{4\ell}$ < 130 GeV

 $\star p_{\rm T}^{\mu} > 5 {
m GeV}, |\eta| < 2.7$

★ p_{T}^{e} > 7 GeV, |η| < 2.47

★ Selection acceptance~50% total phase space

70	Bkg	Estimate approach
	SM ZZ*	simulation
	Zj, t t , triboson	from data

ATLAS-CONF-2017-032

H→4ℓ fiducial volume

Acceptance ~ 50%

Leptons and jets			
Muons:	$p_{\rm T} > 5 {\rm GeV}, \eta < 2.7$		
Electrons:	$p_{\rm T} > 7 {\rm GeV}, \eta < 2.47$		
Jets:	$p_{\rm T} > 30 {\rm GeV}, y < 4.4$		
Jet-lepton overlap removal:	$\Delta R(\text{jet}, \ell) > 0.1 (0.2) \text{ for muons (electrons)}$		
I	Lepton selection and pairing		
Lepton kinematics:	$p_{\rm T} > 20, 15, 10 {\rm ~GeV}$		
Leading pair (m_{12}) :	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Subleading pair (m_{34}) :	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Event selection	on (at most one quadruplet per channel)		
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}$ and $12 < m_{34} < 115 \text{ GeV}$		
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1 (0.2)$ for same- (different-) flavour leptons		
J/ψ veto:	$m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOS lepton pairs		
Mass window:	$115 \; GeV < m_{4\ell} < 130 \; GeV$		

ATLAS-CONF-2017-032

Fiducial cross sections

Acceptance x Efficiency = 16% (4e) - 31% (4µ)

- ★ Signal extracted with profile likelihood template fit to m_{4ℓ} spectrum
- ★ Corrected for detector resolution and efficiency
- ★ Same flavor and opposite flavor cross sections extracted to probe sensitivity to interference between all same-flavor leptons in final state (SM: ~10% effect)

ATLAS-CONF-2017-032

Differential cross sections

★ Observables: $p_T^{4\ell}$, $|y_{4\ell}|$, $|cos\theta^*|$, $\Delta\phi_{jj}$, m_{12} , m_{34} , N_{jets} , m_{jj} , $p_{T,J1}$

★ Probing kinematics, pp collision PDFs, spin, parity, production mode, perturbative QCD

ATLAS-CONF-2017-032

Double differential cross sections

★ Probe perturbative QCD for different production modes

ATLAS-CONF-2016-079

H→4ℓ event categories for couplings

Coupling measurements

Observed

 $\sigma_{\text{ggF}+b\bar{b}H+t\bar{t}H} \cdot \mathcal{B}(H \to ZZ^*) = 1.80^{+0.49}_{-0.44} \text{ pb}$ $\sigma_{\text{VBF}} \cdot \mathcal{B}(H \to ZZ^*) = 0.37^{+0.28}_{-0.21} \text{ pb}$ $\sigma_{\text{VH}} \cdot \mathcal{B}(H \to ZZ^*) = 0^{+0.15} \text{ pb}$

Expected

$$\begin{split} \sigma_{\mathrm{SM,ggF}+b\bar{b}H+t\bar{t}H} \cdot \mathcal{B}(H \to ZZ^*) &= 1.31 \pm 0.07 \text{ pb} \\ \sigma_{\mathrm{SM,VBF}} \cdot \mathcal{B}(H \to ZZ^*) &= 0.100 \pm 0.003 \text{ pb} \\ \sigma_{\mathrm{SM,VH}} \cdot \mathcal{B}(H \to ZZ^*) &= 0.059 \pm 0.002 \text{ pb} \end{split}$$

13.3 (yy) + 14.8 (4ℓ) fb⁻¹

ATLAS-CONF-2016-081

yy/4l combination

Parameter value norm. to SM value

ATLAS-CONF-2016-112

$H \rightarrow WW^* \rightarrow \ell \vee \ell' \vee$

Abundant decay...and abundant backgrounds $\mathscr{B}(m_{H}=125 \text{ GeV}) = 1.06\%$

Hannah Herde (Brandeis)

H→WW*→ℓvℓ'v analysis strategy

Concentrate on VBF, WH production → event topology distinguishes signal from backgrounds

- ★ Selection designed to suppress backgrounds (Top, Vj, WW, Z→ττ, ggF, VV)
 - ggF not considered → high QCD multijet backgrounds ∴ treated as background
 - Top, Z→ττ estimated from data (rest from simulation)
- ★ Multivariate discriminant (BDT) in VBF channel

Observed signal strength and significance

Search for ttH production

Direct probe of top-Higgs Yukawa coupling SM predicts 3.9x more common at 13 TeV compared to 8 TeV

Hannah Herde (Brandeis) WIN2017: 125 GeV Higgs Cross sections & Couplings at ATLAS

ATLAS-CONF-2016-068

13.2-13.3 fb⁻¹

Combined search: tTH production

Hannah Herde (Brandeis)

ATLAS-CONF-2016-091, ATLAS-CONF-2016-063

Search for $H \rightarrow b\overline{b}$ decays

Common decay pathway plagued by tremendous backgrounds $\mathscr{B}(m_{\rm H}=125~{\rm GeV}) = 58\%$

Search for $VH \rightarrow bb$

 $\star m_{b\overline{b}}$ binned in 2-jets and 3-jets x 0, 1, 2 leptons

★
$$p_{T^{V}}$$
 > 150 GeV (V = W, Z)

 \star bb QCD production is major background

ATLAS-CONF-2016-091

Search for $VH \rightarrow b\overline{b}$: Results

ATLAS-CONF-2016-063

Search for VBF $H \rightarrow b\overline{b}$

★ Signature: 2 b-jets, 2 high-energy forward jets (VBF), high-p_T γ

- trigger on γ
- gluon-induced component of $b\overline{b}y$ jj bkg naturally suppressed
- Destructive interference suppresses central γ emission by bkg processes
- Selected events passed to BDT to further separate signal and nonresonant multi-jet background
- ★ non-resonant QCD = dominant bkg

ATLAS-CONF-2016-063

Search for VBF $H \rightarrow b\overline{b}$: Results

Result	$H(\rightarrow b\bar{b})+\gamma jj$
Expected significance	0.4
Expected <i>p</i> -value	0.4
Observed <i>p</i> -value	0.9
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$
Observed limit	4.0
Observed signal strength μ	-3.9 $^{+2.8}_{-2.7}$

- ★ Signal strength µ extracted with profile likelihood fit to m_{bb} spectrum
- ★ Largest systematics from background analysis with BDT

Summary

Prod. Decay	g UU t, b g UU ggF	$q \xrightarrow{w,z} q$ $w,z \xrightarrow{w,z} q$ $w,z \xrightarrow{w,z} q$ WBF		g ll t g ll t t tH	Inclusive
Η→γγ	µ=0.59 ^{+0.29} -0.28	µ=2.24 ^{+0.80} -0.71	µ=0.23 +1.27 -1.05	µ=-0.25 ^{+1.26} -0.99	µ=0.85 ^{+0.22} -0.20
H→ZZ*→4ℓ	$\sigma_{ggF+b\overline{b}H+t\overline{t}H}\bullet\mathscr{B}$ =1.80 ^{+0.49} pb	_{ovb} , =0.37 ^{+0.28} _{-0.21} pb	_{о∨н} • <i>ℬ</i> =0 ^{+0.15} pb		o _{fid} 4ℓ =3.62 ^{+0.59} fb
H→WW*→ℓvℓv		lim(σ∙ℬ), 95% C.L. = 3.0 pb	^{WH} lim(σ∙ <i>ℬ</i>),95% C.L. = 3.3 pb		
Search: ttH				Observed signif. = 2.8σ	
Search: VH→bচ̄		—	Observed signif. = 0.42σ		
Search VBF H→bচ̄		lim(σ●ℬ), 95% C.L. = 4x SM expectation			

Summary

- ★ 2015-2016 LHC season already exceed Run I sensitivity to Higgs processes
- ★ 13 TeV fiducial, differential cross sections and coupling measurements support SM across multiple channels
- ★ 2017 LHC season just started! Stay tuned!

References

- ★ Run I Results: <u>JHEP (2016) 2016: 45.</u>
- ★ H→γγ: <u>ATLAS-CONF-2016-067</u>

★ H→ZZ*→4ℓ: <u>ATLAS-CONF-2017-032</u>, <u>ATLAS-CONF-2016-079</u>

★ H→yy/H→ZZ*→4ℓ Combination: <u>ATLAS-CONF-2016-081</u>

★ H→WW*→ $\ell \nu \ell \nu$: <u>ATLAS-CONF-2016-112</u>

★ Combined search for tTH production: <u>ATLAS-CONF-2016-068</u>

★VH→bb: <u>ATLAS-CONF-2016-091</u>

★ VBF H→b \overline{b} : <u>ATLAS-CONF-2016-063</u>

Backup

New for Run II

ATLAS-CONF-2016-067

$H \rightarrow \gamma \gamma$ Event Selection

	diphoton baseline	VBF enhanced	single lepton
Photons	$ \eta $	< 1.37 or $1.52 < \eta < 2.37$	
	$p_{\mathrm{T}}^{\gamma_{1}} >$	$0.35 m_{\gamma\gamma}$ and $p_{\mathrm{T}}^{\gamma_2} > 0.25 m_{\gamma\gamma}$	Ý
Jets	_	$p_{\rm T} > 30 {\rm GeV}$, $ y < 4.4$	-
	-	$m_{jj} > 400 \text{GeV}, \Delta y_{jj} > 2.8$	-
	_	$ \Delta\phi_{\gamma\gamma,jj} > 2.6$	-
Leptons	-	_	$p_{\rm T} > 15 \mathrm{GeV}$
			$ \eta < 2.47$

ATLAS-CONF-2016-067

H-yy Pulls

ATLAS-CONF-2016-067

$H \rightarrow \gamma \gamma$: Differential cross sections

ATLAS-CONF-2016-067

$H \rightarrow \gamma \gamma$: Differential cross sections

ATLAS-CONF-2016-067

- enriched in production mode
- based on S/B and resolution

Hannah Herde (Brandeis)

★ Measure simplified template cross sections, total production mode cross sections, corresponding signal strength

ATLAS-CONF-2016-067

$H \rightarrow \gamma \gamma$: Inclusive signal strength

36.1/14.8 fb⁻¹

ATLAS-CONF-2017-032, ATLAS-CONF-2016-079

H→4ℓ Event Selection

Leptons and Jets requirements

Electrons

Loose Likelihood quality electrons with hit in innermost layer, $E_{\rm T} > 7 GeV$ and $|\eta| < 2.47$

Muons

Loose identification $|\eta| < 2.7$

Calo-tagged muons with $p_{\rm T} > 15 \; GeV$ and $|\eta| < 0.1$

Combined, stand-alone (with ID hits if available) and segment tagged muons with $p_{\rm T} > 5 \; GeV$

Jets

anti- k_t jets with $p_T > 30 GeV$, $|\eta| < 4.5$ and passing pile-up jet rejection requirements

Event Selection

Quadruplet	Require at least one quadruplet of leptons consisting of two pairs of same flavour
SELECTION	opposite-charge leptons fulfilling the following requirements:
	$p_{\rm T}$ thresholds for three leading leptons in the quadruplet - 20, 15 and $10 GeV$
	Maximum of one calo-tagged or standalone muon per quadruplet
	Select best quadruplet to be the one with the (sub)leading dilepton mass
	(second) closest the Z mass
	Leading dilepton mass requirement: $50 \text{ GeV} < m_{12} < 106 \text{ GeV}$
	Sub-leading dilepton mass requirement: $12 < m_{34} < 115 GeV$
	Remove quadruplet if alternative same-flavour opposite-charge dilepton gives $m_{\ell\ell} < 5 GeV$
	$\Delta R(\ell, \ell') > 0.10 \ (0.20)$ for all same(different)-flavour leptons in the quadruplet
ISOLATION	Contribution from the other leptons of the quadruplet is subtracted
	Muon track isolation ($\Delta R \leq 0.30$): $\Sigma p_{\rm T}/p_{\rm T} < 0.15$
	Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_{\rm T}/p_{\rm T} < 0.30$
	Electron track isolation ($\Delta R \leq 0.20$) : $\Sigma E_{\rm T}/E_{\rm T} < 0.15$
	Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_{\rm T}/E_{\rm T} < 0.20$
Impact	Apply impact parameter significance cut to all leptons of the quadruplet.
Parameter	For electrons : $ d_0/\sigma_{d_0} < 5$
SIGNIFICANCE	For muons : $ d_0/\sigma_{d_0} < 3$
VERTEX	Require a common vertex for the leptons
SELECTION	$\gamma^2/\text{ndof} < 6$ for 4μ and < 9 for others.

ATLAS-CONF-2017-032

H→4ℓ: Differential cross sections

36.1 fb⁻¹

H→4ℓ: Differential cross sections

H→4ℓ: Double differential cross sections

ATLAS-CONF-2016-112

H→WW*→ℓvℓv Selection

- ★ Concentrate on VBF, WH production modes → event topology distinguishes from background
- ★ Selection designed to suppress backgrounds (Top, Vj, WW, $Z \rightarrow \tau\tau$, ggF, VV)
 - Opposite flavour leptons to reject Drell-Yan continuum production
 - Tight lepton ID and isolation
 - *b*-jet veto to reject top quark processes

	VBF Criteria	WH Critera	
Exactly 1 e	and 1 μ , Opposite charge pair	3 isolated leptons with ETmiss	>50 GeV
	Explicit Z→ττ veto	Total charge ±e	
	N _{jets} ≥2	N _{jets} ≤1	q s sw
w,z w,z	No <i>b</i> -jets	Z veto	www.sinn
	BDT		ч WH
Hannah Herde (E	Brandeis) WIN2017: 125 GeV Higgs Cro	ss sections & Couplings at ATLAS	50

ATLAS-CONF-2016-112

H→WW*→ℓvℓv Selection

q	q
W ,Z >	H
$q \longrightarrow $	q
VBF	

5.8 fb⁻¹

	Signal region	$Z \to \tau \tau \ \mathrm{CR}$	Top-quark CR			
Preselection	Two isolate $p_{\rm T}^{\rm lead} > 25 GeV \ (p_{\rm T}^{\rm lead})$	Two isolated leptons $(\ell = e, \mu)$ with opposite charge $p_{\rm T}^{\rm lead} > 25 GeV \ (p_{\rm T}^{\rm lead} > 22 GeV \text{ for muons in 2015}), \ p_{\rm T}^{\rm sublead} > 15 GeV$ $m_{\ell\ell} > 10 GeV, \ N_{\rm jet} \geq 2$				
	$N_{b-jet} = 0$	$N_{b-jet} = 0$	$N_{b-jet} = 1$			
A BDT is trained at this level. Eight discriminant variables are used: $\Delta \phi_{\ell\ell}$, $m_{\ell\ell}$, $m_{\rm T}$, Δy_{jj} , m_{jj} , $p_{\rm T}^{\rm tot}$, $\sum_{\ell,j} m_{\ell j}$, and $\eta_{\ell}^{\rm centrality}$						
Selection	$m_{\tau\tau} < 66.2 GeV$	$ m_{\tau\tau} - m_Z < 25 GeV$	_			
	_	$m_{\ell\ell} < 80 GeV$	_			
	OLV applied, CJV applied, $BDT > -0.8$					
	SR1: $-0.8 < BDT \le 0.7$	_	_			
	SR2: $0.7 < BDT \le 1$	_	_			

Category	Z-dominated SR ≥ 1 SFOS pair	Z-depleted SR no SFOS pair
Preselection	Three isolated leptons $(p_T \text{ total charge} = \pm 2 1$ lepton matches to the	>15 GeV) 1 ne trigger
Background Rejection	$N_{\rm jet} \le 1, N_{b-\rm jet} = E_{\rm T}^{ m miss} > 50 \ { m GeV} \ m_{\ell^+\ell^-} - m_Z > 25 \ { m GeV} \ m_{\ell^+\ell^-}^{ m max} < 200 \ { m GeV} \ m_{\ell^+\ell^-}^{ m min} > 12 \ { m GeV}$	$\begin{array}{c} 0 \\ - \\ Z/\gamma^* \to ee \text{ veto} \\ \\ \\ M_{\ell^+\ell^-} > 6 \text{ GeV} \end{array}$
$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ topology	$\Delta R_{\ell_0 \ell_1} < 2.0$	

ATLAS-CONF-2016-112

13.2-13.3 fb⁻¹

ATLAS-CONF-2016-068

Combined search: ttH production

	H -	$ ightarrow \gamma \gamma$	$H \to (WW, \tau\tau, ZZ)$		$H ightarrow b ar{b}$			
Analysis	Narrow si	gnal peak:	Small signal and background:		Moderate signal in large background:			
strategy	fit to diphoton mass			counting experiment			multivariate techniques	
	spectru	m $(m_{\gamma\gamma})$						
Channels	leptonic	hadronic	$2\ell SS$	3ℓ	$2\ell SS + 1\tau_{had}$	4ℓ	single lepton	dilepton
Control		-		-			(4j,2bj) (5j,2bj)	(3j,2bj)
regions							(4j, 3bj) $(4j, 4bj)$	(4j,2bj)
							$(\geq 6j, 2bj)$ (5j, 3bj)	
Signal	m	$\gamma\gamma\gamma$	(ee) (e μ) ($\mu\mu$)	$(3j, \ge 2bj$	$(\geq 4j, \geq 1bj)$	$(\geq 2j,\geq 1bj)$	$(5j, \ge 4bj)$	(3j, 3bj)
regions			AND	OR			$(\geq 6j, 3bj)$	$(\geq 4j, 3bj)$
			$(\geq 5j, \geq 1bj)$	$\geq 4j, \geq 1bj$			$(\geq 6j, \geq 4bj)$	$(\geq 4j, \geq 4bj)$

ATLAS-CONF-2016-068

13.2-13.3 fb⁻¹

Combined search: tTH production

Run II observed significance = 2.8σ

Hannah Herde (Brandeis)

Search for $H \rightarrow \mu\mu$

- ★ Very small predicted production cross section
- ★ Measure coupling to secondgeneration fermions
- ★ Clean signal expected, some backgrounds (Drell-Yan)

Upper limit, given <i>m</i> _H = 125 GeV, 95% C.L	Observed (x <i>o</i> _{SM})	Expected (x o _{SM})
σ● <i>ℬ</i> @13 TeV	3.0	3.1
σ●ℬ combined with 7-8 TeV	2.8	2.9