Measurements of the Higgs boson mass and its spin and CP properties with the ATLAS Detector

Tulin Varol SMU – Dallas Presented on behalf of the ATLAS Collaboration at the International Conference on Weak Interactions and Neutrinos 2017 – UC Irvine Slides prepared by Stephen Sekula

~ Me(

- Theoretical Motivation
- Higgs Mass
- Higgs Spin and Parity
- Conclusions and Outlook

$\frac{1}{3}Q = (3,2;\frac{1}{6}) = [d_{4}/d_{4})$ 11 m~130 Mel p E m~0.5 Mel j(p+m u The p²-m² d The Va A ~ Ma ($-\frac{1}{3}$ $U^{(2)}_{...} = (\overline{3}, 1, -\frac{2}{3}) \sim U^{*}_{R}$ $\frac{-1}{3}D^{c}=(\overline{3},1,\frac{1}{3})^{-1'}d^{*'}$ j=0,mj=0 ML MR A ~ Me($+1 \left[= (1, 2, -\frac{1}{2}) \right]$ Theoretical Motivation $(H_{u}) = (1, 2, + 2) = (H_{u}) = (H_{u}) = \chi \chi^{+} \chi^{+}$ $O \quad H_d = (1, 2, -\frac{1}{2}) = (H_d)$ $\chi \longrightarrow \chi = \begin{pmatrix} \chi \\ \xi^{\dagger} \end{pmatrix}$ $\chi \longrightarrow x \leftarrow \chi$ $N = \begin{pmatrix} \chi \\ \chi^* \end{pmatrix}$ SU(3), XSU(2), XU(1), 1 W = YyQeHyU + YJQ.HJD + YeQ.LE +MH

The Standard Model and the Higgs Boson

Once the mass of the Higgs boson is established, the Standard Model (SM) is *highly predictive* of other properties of the Higgs boson.

$$\Gamma_{\rm NLO}(H \to q\bar{q}) \simeq \frac{3G_{\mu}}{4\sqrt{2\pi}} M_H m_q^2 \left[1 + \frac{4\alpha_s}{3\pi} \left(\frac{9}{4} + \frac{3}{2} \log \frac{m_q^2}{M_H^2} \right) \right]$$

Given the history of **parameter measurement within the SM** context, once you actually **find the Higgs boson** its couplings to other particles snap into view.

Higgs Production and Decay at LHC

Probing New Physics Contributions

A

+

t,b

g 200000

g 000000

Spin-0 model: a CP-odd scalar mixes with a CP-even scalar. The mixing angle is α and the anomalous couplings to vector bosons are written $\kappa_{\rm HVV}$ and $\kappa_{\rm AVV}$.

$$= \left\{ \cos(\alpha)\kappa_{\rm SM} \left[\frac{1}{2}g_{HZZ}Z_{\mu}Z^{\mu} + g_{HWW}W_{\mu}^{+}W^{-\mu} \right] \right. \\ \left. - \frac{1}{4}\frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu} + \sin(\alpha)\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu} \right] \right. \\ \left. - \frac{1}{2}\frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HWW}W_{\mu\nu}^{+}W^{-\mu\nu} + \sin(\alpha)\kappa_{AWW}W_{\mu\nu}^{+}\tilde{W}^{-\mu\nu} \right] \right\} X_{0}$$

If the SM is correct, we observe that: $\kappa_{\rm HVV} = \kappa_{\rm AVV} = 0$ and $\alpha = 0$.

$$\tilde{\kappa}_{AVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{AVV}$$
 and $\tilde{\kappa}_{HVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{HVV}$

Stephen J. Sekula - SMU

JHEP 1311 (2013) 043

Probing New Physics Contributions

Spin-2 model: select a spin-2 model with graviton-like couplings. One then has to try different parameter spaces for quark and gluon couplings and assess their compatibility with data.

$$\mathcal{L}_2 = -\frac{1}{\Lambda} \left[\sum_V \kappa_V \mathcal{T}^V_{\mu\nu} X^{\mu\nu} + \sum_f \kappa_f \mathcal{T}^f_{\mu\nu} X^{\mu\nu} \right]$$

+

This model allows us to probe tensor couplings, which are expected to be zero in the SM.

Well-Resolved Higgs Decays: ZZ* and YY

Invariant Mass Distributions

Detector resolution dominates the measurements – the natural width is expected to be almost 500x smaller than the widths seen here.

Phys. Rev. D 90, 052004

Stephen J. Sekula - SMU

Mass Measurement – channel-by-channel

Higgs Spin and Parity

Stephen J. Sekula - SMU

Stephen J. Sekula - SMU

Stephen J. Sekula - SMU

17/25

Hypothesis Discrimination: backgrounds vs. signal hypotheses

For each final state $(ZZ^*, WW^*,$ and $\gamma\gamma$) the background shapes are included and data compared to the combination of background and a pair of signal hypotheses: $J^P = 0^+$ and an *alternative* (e.g. $0^-, 0^+_h, 2^+, \text{etc}$).

- ZZ* analysis
- WW* analysis
- γγ

Hypothesis Discrimination: backgrounds vs. signal hypotheses

For each final state (ZZ*, WW*, and $\gamma\gamma$) the background shapes are included and data compared to the combination of background and a pair of signal hypotheses: J^P=0⁺ and an *alternative* (e.g. 0⁻, 0⁺_h, 2⁺, etc).

- ZZ* analysis
- WW* analysis
- γγ

Hypothesis Discrimination: backgrounds vs. signal hypotheses

For each final state (ZZ^*, WW^*) , and $\gamma\gamma$) the background shapes are included and data compared to the combination of background and a pair of signal hypotheses: $J^P = 0^+$ and an *alternative* (e.g. $0^-, 0^+_h, 2^+, \text{etc}$).

• ZZ* analysis

• WW* analysis

• **YY** analysis

In this channel, events are categorized in ways consistent with hypothetical Higgs production mechanism. Gluon/Quark coupling alterations would then change the "fingerprints" of these categories.

Stephen J. Sekula - SMU

Results – pairwise hypothesis comparisons

Results – Tensor Structure Analysis

Coupling ratio	Best-fit value	95% CL Exclusion Regions				
Combined	Observed	Expected	Observed			
$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	-0.48	$(-\infty, -0.55] \bigcup [4.80, \infty)$	$(-\infty, -0.73] \bigcup [0.63, \infty)$			
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM}) \cdot \tan \alpha$	-0.68	$(-\infty, -2.33] \cup [2.30, \infty)$	$(-\infty, -2.18] \bigcup [0.83, \infty)$			

Conclusions: SM still favored compared to this extension.

Eur. Phys. J. C75 (2015) 476

Stephen J. Sekula - SMU

Conclusions and Outlook

Data-taking exceeded expectations in 2016. Public results from $H \rightarrow ZZ^*,WW^*$, $\gamma\gamma$ overall use only a fraction of available data so far, some using Run 1 only. Watch for updates on full 2015-2016 data sets!

LHC planning to deliver 90fb⁻¹ **for 2017+2018.** Expect the textbooks to continue to need rewriting as ATLAS and CMS improve our knowledge of the Higgs Boson.

Stephen J. Sekula - SMU

ATLAS-CONF-2017-032 and ATLAS-CONF-2016-112 and ATLAS-CONF-2016-067

24/25

- The 125-GeV boson is highly compatible with the Standard Model Higgs Boson
 - Mass:
 - ATLAS: $(125.36 \pm 0.37_{stat.} \pm 0.18_{syst.})$ GeV
 - ATLAS+CMS: $(125.09 \pm 0.21_{stat.} \pm 0.11_{syst.})$ GeV

Phys. Rev. Lett. 114 (2015) 191803

- Spin and Parity
 - Favors strongly the J^p=0+ hypothesis in pairwise comparisons with alternative hypotheses.
- Couplings are another way to look at all of this. See JHEP 08 (2016) 045
- Future
 - The Higgs is "re-discovered" in Run 2. ATLAS continuing with detailed analyses of the Higgs Boson. Watch for updates.
 - LHC planning to deliver 90fb⁻¹ more in Run 2!

Mass Systematics – ZZ^{\star} and $\gamma\gamma$

Systematic	Uncertainty on m_H [MeV]
LAr syst on material before presampler (barrel)	70
LAr syst on material after presampler (barrel)	20
LAr cell nonlinearity (layer 2)	60
LAr cell nonlinearity (layer 1)	30
LAr layer calibration (barrel)	50
Lateral shower shape (conv)	50
Lateral shower shape (unconv)	40
Presampler energy scale (barrel)	20
ID material model $(\eta < 1.1)$	50
$H \to \gamma \gamma$ background model (unconv rest low $p_{\rm Tt}$)	40
$Z \rightarrow ee$ calibration	50
Primary vertex effect on mass scale	20
Muon momentum scale	10
Remaining systematic uncertainties	70
Total	180

Mass Systematics – $\gamma\gamma$ breakdown

	Unconverted				Converted					
	Cer	ntral	Rest		Transition	$\operatorname{Central}$		Rest		Transition
Class	low $p_{\rm Tt}$	high p_{Tt}	low $p_{\rm Tt}$	high p_{Tt}		low p_{Tt}	high p_{Tt}	low $p_{\rm Tt}$	high p_{Tt}	
$Z \rightarrow e^+ e^-$ calibration	0.02	0.03	0.04	0.04	0.11	0.02	0.02	0.05	0.05	0.11
LAr cell nonlinearity	0.12	0.19	0.09	0.16	0.39	0.09	0.19	0.06	0.14	0.29
Layer calibration	0.13	0.16	0.11	0.13	0.13	0.07	0.10	0.05	0.07	0.07
ID material	0.06	0.06	0.08	0.08	0.10	0.05	0.05	0.06	0.06	0.06
Other material	0.07	0.08	0.14	0.15	0.35	0.04	0.04	0.07	0.08	0.20
Conversion reconstruction	0.02	0.02	0.03	0.03	0.05	0.03	0.02	0.05	0.04	0.06
Lateral shower shape	0.04	0.04	0.07	0.07	0.06	0.09	0.09	0.18	0.19	0.16
Background modeling	0.10	0.06	0.05	0.11	0.16	0.13	0.06	0.14	0.18	0.20
Vertex measurement	0.03									
Total	0.23	0.28	0.24	0.30	0.59	0.21	0.25	0.27	0.33	0.47

Systematics in $\gamma\gamma$ are subdivided into the case where the photon does or does not convert ($\gamma \rightarrow ee$) in material as it traverses the ATLAS detector.

- Converted photons are electron pairs and can be calibrated more reliably using the Z → ee measurement. Otherwise, dominant systematics are Liquid Argon (LAr) calorimeter cell linearity (of response to energy) and the layer calibration.
- Unconverted photons have a larger systematic from the $Z \rightarrow$ ee calibration and otherwise are dominated by the same effects as the converted photons.

Spin-Parity Measurement - Extras

Confidence Levels – Channel-by-Channel

	$H \to \gamma \gamma$					
Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\mathrm{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{\mathrm{obs}}^{\mathrm{alt}}$	Obs. CL_s (%)	
$2^+(\kappa_q = \kappa_q)$	0.13	$7.5 \cdot 10^{-2}$	0.13	0.34	39	
$2^+(\kappa_q = 0; p_{\rm T} < 300 GeV)$	$4.3 \cdot 10^{-4}$	$< 3.1 \cdot 10^{-5}$	0.16	$2.9 \cdot 10^{-4}$	$3.5 \cdot 10^{-2}$	
$2^+(\kappa_q = 0; \ p_{\rm T} < 125 GeV)$	$9.4 \cdot 10^{-2}$	$5.6 \cdot 10^{-2}$	0.23	0.20	26	
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 300 GeV)$	$9.1 \cdot 10^{-4}$	$< 3.1 \cdot 10^{-5}$	0.16	$8.6 \cdot 10^{-4}$	0.10	
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	0.27	0.24	0.20	0.54	68	
	$H \to WW^* \to e\nu\mu\nu$					
Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\text{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{ m obs}^{ m alt}$	Obs. CL_s (%)	
0_h^+	0.31	0.29	0.91	$2.7 \cdot 10^{-2}$	29	
0-	$6.4 \cdot 10^{-2}$	$3.2 \cdot 10^{-2}$	0.65	$1.2 \cdot 10^{-2}$	3.5	
$2^+(\kappa_q = \kappa_g)$	$6.4 \cdot 10^{-2}$	$3.3 \cdot 10^{-2}$	0.25	0.12	16	
$2^+(\kappa_q = 0; \ p_{\rm T} < 300 GeV)$	$1.5 \cdot 10^{-2}$	$4.0 \cdot 10^{-3}$	0.55	$3.0 \cdot 10^{-3}$	0.6	
$2^+(\kappa_q = 0; p_{\rm T} < 125 GeV)$	$5.6 \cdot 10^{-2}$	$2.9 \cdot 10^{-2}$	0.42	$4.4 \cdot 10^{-2}$	7.5	
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 300 GeV)$	$1.5 \cdot 10^{-2}$	$4.0 \cdot 10^{-3}$	0.52	$3.0 \cdot 10^{-3}$	0.7	
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	$4.4 \cdot 10^{-2}$	$2.2 \cdot 10^{-2}$	0.69	$7.0 \cdot 10^{-3}$	2.2	
	$H \to ZZ^* \to 4\ell$					
Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\mathrm{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{ m obs}^{ m alt}$	Obs. CL_s (%)	
0_h^+	$3.2 \cdot 10^{-2}$	$5.2 \cdot 10^{-3}$	0.80	$3.6 \cdot 10^{-4}$	0.18	
0-	$8.0 \cdot 10^{-3}$	$3.6 \cdot 10^{-4}$	0.88	$1.2 \cdot 10^{-5}$	$1.0 \cdot 10^{-2}$	
$2^+(\kappa_q = \kappa_g)$	$3.3\cdot10^{-2}$	$5.7 \cdot 10^{-4}$	0.91	$3.6 \cdot 10^{-5}$	$4.0 \cdot 10^{-2}$	
$2^+(\kappa_q = 0; p_{\rm T} < 300 GeV)$	$3.9 \cdot 10^{-2}$	$9.0 \cdot 10^{-3}$	0.95	$2.7 \cdot 10^{-5}$	$5.4 \cdot 10^{-2}$	
$2^+(\kappa_q = 0; p_{\rm T} < 125 GeV)$	$4.6 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$	0.93	$3.0 \cdot 10^{-5}$	$4.3 \cdot 10^{-2}$	
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 300 GeV)$	$4.6 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$	0.66	$3.3 \cdot 10^{-3}$	0.97	
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	$5.0 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	0.88	$3.2 \cdot 10^{-4}$	0.27	

Stephen J. Sekula - SMU

Confidence Levels – Combined

Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\text{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{ m obs}^{ m alt}$	Obs. CL_s (%)
0_h^+	$2.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	0.85	$7.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-2}$
0^{-}	$1.8 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	0.88	$< 3.1 \cdot 10^{-5}$	$< 2.6 \cdot 10^{-2}$
$2^+(\kappa_q = \kappa_g)$	$4.3 \cdot 10^{-3}$	$2.9\cdot10^{-4}$	0.61	$4.3 \cdot 10^{-5}$	$1.1 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 300 GeV)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.52	$< 3.1 \cdot 10^{-5}$	$< 6.5 \cdot 10^{-3}$
$2^+(\kappa_q = 0; p_{\rm T} < 125 GeV)$	$3.4\cdot10^{-3}$	$3.9\cdot10^{-4}$	0.71	$4.3 \cdot 10^{-5}$	$1.5 \cdot 10^{-2}$
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 300 GeV)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.28	$< 3.1 \cdot 10^{-5}$	$< 4.3 \cdot 10^{-3}$
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	$7.8\cdot10^{-3}$	$1.2\cdot10^{-3}$	0.80	$7.3\cdot10^{-5}$	$3.7 \cdot 10^{-2}$