Status of the SNO+ experiment

Richie Bonventre for the SNO+ collaboration WIN 2017

Lawrence Berkeley National Lab

The SNO+ collaboration

120 members of 23 institutions over 6 countries

- University of Alberta
- Armstrong Atlantic State University
- University of California, Berkeley / LBNL
- Black Hills State University
- Brookhaven National Laboratory
- University of California, Davis
- University of Chicago
- Technical University of Dresden
- Lancaster University
- Laurentian University
- LIP Lisboa and Coimbra
- University of Liverpool
- University of North Carolina at Chapel Hill
- Oxford University
- University of Pennsylvania
- Queen Mary University of London
- Queen's University
- SNOLAB
- University of Sussex
- TRIUMF
- Universidad Nacional Autonoma de Mexico
- University of Washington

- 2km underground, 6010 mwe
 - \sim 63 cosmic muons per day
- Support structure holding ~9300 PMTs (~50% coverage)
- 7 kT ultra pure water shielding
- Target volume contained in 6m radius acrylic vessel

The SNO detector \rightarrow SNO+ detector

SNO+ detector upgraded to look for neutrinoless double beta decay

- Target material changing from heavy water to liquid scintillator
 - Lower energy threshold and higher resolution
 - Load with ¹³⁰Te for $0\nu\beta\beta$ measurement
- Hold-down ropes: compensate for buoyancy of scintillator
- Upgraded electronics: handle higher event rates (>1kHz)
- Repaired PMTs
- Installed new LED calibration system

Liquid scintillator + Tellurium

- Scintillator: Linear Alkylbenzene
 - High light yield (\sim 1000 photons/MeV)
 - Long attenuation length (\sim 20 m)
 - High flash point (safe)
- Wavelength shifter: PPO
 - x10 light yield
 - α/β discrimination
- Double beta decay isotope: ¹³⁰Te
 - Long $2\nu\beta\beta$ lifetime: $\sim7 \times 10^{20}$ yrs
 - High Q value ${\sim}2.5$ MeV
 - High natural abundance
 - No absorption lines in PMT sensitive region
 - Plan for 0.5% loading with Te-butanediol (${\sim}1330~{\rm kg}$ of $^{130}{\rm Te})$

Double beta decay signals and backgrounds

• \sim 13 counts/year backgrounds in first year

• Expected spectrum after full 5 year run with 0.5% loading, with $m_{\beta\beta}=200meV$

Double beta decay sensitivity

- Phase I:
 - $T_{1/2}\sim 2\times 10^{26}$ years
- Phase II: Increased Te loading, HQE PMTs

Other physics with SNO+

	Water Phase	Pure Scintillator Phase	Te-loaded Scintillato Phase
Neutrinoless double beta decay			×
⁸ B solar neutrinos		×	×
Low energy solar neutrinos		×	
Reactor and geo neutrinos		×	×
Exotics searches (ex.: nucleon decay)	×	×	×
Supernova	×	×	×

- Look for invisible decay, e.g.: $n \rightarrow \nu \nu \nu$
- $^{16}\text{O} \rightarrow ^{15}\text{O}^*$ or $^{15}\text{N}^*\text{,} \sim$ 5 MeV visible energy
- 6 months of data ightarrow 30 background counts in ROI
- 90% CL:
 - $\tau_n = 1.2 \times 10^{30}$ years (current limit KamLAND: 5.8×10²⁹)
 - $\tau_p = 1.4 \times 10^{30}$ years (current limit SNO: 2.1×10²⁹)

Upgrades and commissioning progress

- Repaired leaks in cavity and replaced repaired PMTs
- LED/Laser calibration system installed
- Hold down ropes installed buoyancy test carried out over several periods of water filling

Upgrades and commissioning progress

- Scintillation plant installed and being commissioned
- LAB shipments underground started
- TeA stored underground
- Tellurium purification plant construction started

Upgrades and commissioning progress

• Upgraded electronics and DAQ tested at high data and trigger rates

- Inner and outer volumes filled with water
- Laser and ¹⁶N source calibrations
- Water phase data taking has begun
 - Nucleon decay measurement
 - Characterize external backgrounds for future phases

Conclusion

Candidate atmospheric neutrino event

- SNO+ is currently filled with water and taking physics data
 - In 6 months of running it will provide the strongest limit on invisible nucleon decay
- Scintillator purification system being commissioned
- Tellurium systems under construction
- Neutrinoless double beta decay phase will begin in 2018
 - In 5 years will reach the top of the inverted hierarchy