
Bounds on heavy Majorana neutrinos in 
type-I seesaw and implications for 

collider searches

Arindam Das

Korea Neutrino Research Center


Seoul National University

Korea Institute for Advanced Study


21 June, 2017 @WIN2017, UC Irvine



INTRODUCTION

MeV'

GeV'

TeV'

eV'

meV'

md='4.8'MeV'
mu=2.3'MeV'

ms=95'MeV'

mt='173'GeV'

mb='4.18'GeV'mc=1.275'GeV'

(1, 2) element is constrained by µ ⇤ e�(1, 3) element is constrained by ⇧ ⇤ e�(2, 3) element is constrained by ⇧ ⇤ µ�Diagonal elements are constrained by LEP experiment

sin2 ⇥12 0.87
sin2 ⇥23 1.00
sin2 ⇥13 0.092

�m2
12 = m2

2 �m2
1 7.6⇥ 10�5eV2

�m2
23 = |m2

3 �m2
2| 2.4⇥ 10�3eV2

⌅⌅
s = 500 GeV

⌅
s = 1TeV

Lmass =
�
⇤ c
L NR N c

L

⇥
⇤

⇧
0 mD 0

mT
D 0 M
0 M T µ

⌅

⌃

⇤

⇧
⇤L
N c

R

NL

⌅

⌃ (27)

MN c
LN

c
R = MNLNR (28)

N c
R = i�2N ⇥

R (29)

m� = 1.777GeV (30)

mµ = 105.667GeV (31)

me = 0.511GeV (32)

4

='1.777'GeV'

(1, 2) element is constrained by µ ⇤ e�
(1, 3) element is constrained by ⇧ ⇤ e�
(2, 3) element is constrained by ⇧ ⇤ µ�

Diagonal elements are constrained by LEP experiment

sin2 ⇥12 0.87
sin2 ⇥23 1.00
sin2 ⇥13 0.092

�m2
12 = m2

2 �m2
1 7.6⇥ 10�5eV2

�m2
23 = |m2

3 �m2
2| 2.4⇥ 10�3eV2

⌅⌅
s = 500 GeV

⌅
s = 1TeV

Lmass =
�
⇤c
L NR N c

L

⇥
⇤

⇧
0 mD 0

mT
D 0 M
0 MT µ

⌅

⌃

⇤

⇧
⇤L
N c

R

NL

⌅

⌃ (27)

MN c
LN

c
R = MNLNR (28)

N c
R = i�2N⇥

R (29)

m� = 1.777GeV (30)

mµ = 105.667GeV (31)

me = 0.511GeV (32)

4

='105.667'MeV'

me=0.511'MeV'

Massive'or'Massless''

mz='91.2'GeV'
mw='80.4'GeV'

Standard'Model'Par$cles'

Higgs(125'GeV)'
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More'Mysteries''
Super['Kamiokande,'Sudbury'Neutrino'Observatory''1999','
Neutrino'oscilla$on'between'mass'and'flavor'eigenstates'

Neutrinos'are'very'special''

Neutrino mass

16

NEWSPAPER HEADLINES AROUND THE WORLD PROCLAIMED THAT

NEUTRINOS
HAD MASS, BUT...

a different kind of neutrino has emerged ...

The New York Times, June 6, 1998.
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�m2
21 7.6⇥ 10�5eV2 SNO

|�m31|2 2.4⇥ 10�3eV2 Super�K
sin2 2�12 0.87 KamLAND, SNO
sin2 2�23 0.999 T2K

0.90 MINOS
sin2 2�13 0.084 DayaBay2015

0.1 RENO
0.09 DoubleChooz

3

Neutrino'oscilla$on'data'

More developments

Nobel Prize in 2015



Unresolved'Issues'
Harder Question
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Neutrino oscillations: theory and phenomenology 1

E K Akhmedov 2

Department of Theoretical Physics, Royal Institute of Technology, AlbaNova University
Center, SE-106 91 Stockholm, Sweden

E-mail: akhmedov@ictp.trieste.it

Abstract. A brief overview of selected topics in the theory and phenomenology of neutrino
oscillations is given. These include: oscillations in vacuum and in matter; phenomenology
of 3-flavour neutrino oscillations and e�ective 2-flavour approximations; CP and T violation
in neutrino oscillations in vacuum and in matter; matter e�ects on �µ � �� oscillations;
parametric resonance in neutrino oscillations inside the earth; oscillations below and above
the MSW resonance; unsettled issues in the theory of neutrino oscillations.

1. A bit of history...
The idea of neutrino oscillations was first put forward by Pontecorvo in 1957 [1]. Pontecorvo
suggested the possibility of � � �̄ oscillations, by analogy with K0K̄0 oscillations (only one
neutrino species – �e – was known at that time). Soon after the discovery of muon neutrino,
Maki, Nakagawa and Sakata [2] suggested the possibility of neutrino flavour transitions (which
they called “virtual transmutations”).

Figure 1. Bruno Pontecorvo (1913 - 1993), Shoichi Sakata (1911 - 1970), Ziro Maki (1929 –
2005) and Masami Nakagawa (1932 - 2001).

2. Theory
2.1. Neutrino oscillations in vacuum
Neutrino oscillations are a manifestation of leptonic mixing. For massive neutrinos, weak
(flavour) eigenstates do not in general coincide with mass eigenstates but are their linear
1 Talk given at the XXII International Conference on Neutrino Physics and Astrophysics “Neutrino 2006”, Santa
Fe, June 13-19, 2006
2 On leave from the National Research Center “Kurchatov Institute”, Moscow, Russia
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Other unresolved issues
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3⌃ allowed range from a recent global fit: [Particle Data Group (2014)]

sin2 ⇤12 = 0.259 � 0.359; sin2 ⇤23 = 0.34 � 0.64; sin2 ⇤13 = 0.015 � 0.036.

Is ⇥ ⇤= 0? (Mild indications for ⇥ ⇥ �⇧/2 at T2K and NOvA)
Is ⇤23 smaller, larger or equal to 45�? (may be resolved within the next few
years by T2K+NOvA, PINGU, DUNE,....)
Can we ever measure �1,2? (Some ambitious proposals)
Is the 3-neutrino mixing matrix unitary??
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with two additional phases if the neutrinos are Majorana in nature
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where sij = sin ⇤ij, cij = cos ⇤ij, ⇥ is the Dirac CP- violating phase and ⇧ , ⌃ are

the Majorana CP-violating phases. Therefore, for the Dirac neutrinos we have

seven free parameters which includes three neutrino masses, three mixing angles

and the Dirac CP-violating phase. For Majorana neutrinos we have additional

two Majorana phases.

Now using the unitary matrix one can transform Eq. 1.44 into the mass basis

(or mass eigenstate) of the neutrinos as

Lmass
CC =

g⌅
2
��=e,µ,⌅�ı=1,2,3e�L�

µU ⌅̃iLW
�
µ +H.c. (1.47)

We can write the Quantum Mechanical equation of the neutrinos in the mass basis

i
⌥⌅̃j

⌥t
= (U †HU)⌅̃j (1.48)

where H is the free Hamiltonian and according to relativistic theory H ⇤ E(1 +
m2

j

2E2 ) and solving Eq. 1.48 we write

˜⌅(t)j = e�iE(1+
m2

j
2E2 )t ˜⌅(0). (1.49)
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Can'we'measure''

with two additional phases if the neutrinos are Majorana in nature

UPMNS =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

c12c13 s12c13 s13e�i⇥

�s12c23 � c12s23s13ei⇥ c12c23 � s12s23s13ei⇥ s23c13

s12s23 � c12c23s13ei⇥ �c12s23 � s12c23s13ei⇥ c23c13

⌅

�������⌃

⇥diag
�
1, ei⇤, ei⇧

⇥
, (1.46)

where sij = sin ⇤ij, cij = cos ⇤ij, ⇥ is the Dirac CP- violating phase and ⇧ , ⌃ are

the Majorana CP-violating phases. Therefore, for the Dirac neutrinos we have

seven free parameters which includes three neutrino masses, three mixing angles

and the Dirac CP-violating phase. For Majorana neutrinos we have additional

two Majorana phases.

Now using the unitary matrix one can transform Eq. 1.44 into the mass basis
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with two additional phases if the neutrinos are Majorana in nature
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Tes$ng'the'UNITARITY'of''''

with two additional phases if the neutrinos are Majorana in nature
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''''Bruno''
Pontecorvo' Ziro'Maki' 'Masami''''''

Nakagawa'
Shoichi'Sakata'

Yet to be fixed

Talk Equations

�⇡
2

SU(3)c SU(2)L SU(2)R U(1)B�L

QLi 3 2 1 1
3

QRi 3 1 2 1
3

LLi 1 2 1 -1
LRi 1 1 2 -1
� 1 2 2 0
HR 1 1 2 +1
SLi 1 1 1 0

Table 1: The particle content of the extended model
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Table 2: The particle content of the extended model
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Neutrino'Mass':'What'Type'

Eeore'Majorana','(1906['?')' Paul'Dirac,'FRS'(1902[1984)'

or

Lmass = m⇥⇤c
L⇤L (Majorana mass) (1.43)

The detailed discussion on neutrino mass generation will be given in the next

section.

The current experiments with the solar, atmospheric, reactor and accelerator

neutrinos give very strong evidences of the neutrino flavor oscillations [22], [23],

[24], [25], [26]. This tells us about the existence of the neutrino mass and the

flavor mixing. The LEP analysis provides a very strong bound on the number of

neutrino generations as N⇥ = 2.980 ± 0.0082 ⇥ 3 [27, 28]. Using the flavor basis

we can write the Charged Current (CC) interaction in the lepton sector in the

flavor basis as

LCC =
g⇤
2
��=e,µ,⇤�L⇥

µ⇤�LW
�
µ +H.c. (1.44)

The particles propagate as their mass eigenstates. The SM neutrinos are trans-

formed from the flavor basis (⇤�L) into the mass basis (⇤̃iL) as

⇤�L = U ⇤̃ıL (1.45)

where U is 3� 3 unitarity matrix. Commonly known as the neutrino mixing ma-

trix as described by UPMNS where PMNS stands for Pontecorvo-Maki-Nakagawa-

sakata [29, 30]. UPMNS is parameterized by three Euler angles and a phase along

13

+'H.'c.'

where sij = sin ⇥ij, cij = cos ⇥ij, � is the Dirac CP- violating phase. The experi-

mental value of the VCKM is well measured and given as

VCKM =

�

⇧⇧⇧⇧⇧⇧⇧⇤

0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016
�0.00012

0.2252± 0.0007 0.97345+0.00015
�0.00016 0.0410+0.0011

�0.0007

0.00862+0.00026
�0.00020 0.0403+0.0011

�0.0007 0.999152+0.000030
�0.000045

⇥

⌃⌃⌃⌃⌃⌃⌃⌅

(1.40)

at the 95% C. L [21]. The quarks masses obtained experimentally are given as

mu = 2.3 MeV,

md = 4.8 MeV,

ms = 95 MeV,

mc = 1.275 GeV,

mb = 4.18 GeV,

mt = 173.21 GeV.

(1.41)

This kind of mixing can not take place in the lepton sector because the SM

neutrinos are considered to be massless.

1.2 Neutrino mass and oscillation

Since neutrino mass generation will be discussed in detail in the following

section, we may simply consider the neutrino mass term here

Lmass = m�⇤R⇤L (Dirac mass) (1.42)
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Inverse seesaw Mechanism

• Model accounting for neutrino masses and mixing
•Lmass ⊃ −µN̄c

LNL −MN̄RNL −mDN̄RνL,

νL →
!

mD

NR →
✈

M

NL →
#

µ

← NL ✈

M

← NR !

mD

← νL

• The light neutrino Majorana mass matrix

mν = (mDM
−1)µ(mDM

−1)T (1)

•If µ is very small, O (mν), the mixing mDM
−1 ∼ O(1)

→Large mixing between light and heavy neutrinos
→Heavy neutrino can be produced at high energy colliders

•It will be discussed later that due to the phenomenological constraints
mDM

−1 ≪ 1, but not so small .
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L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

right-handed neutrinos N j
R (j = 1, 2). The relevant part of the Lagrangian is written as

L � �
3

X

i=1

2
X

j=1

Y ij
D ` i

LHN j
R � 1

2

2
X

k=1

m k
NNkC

R Nk
R +H.c., (1)

where ` i
L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

right-handed neutrinos N j
R (j = 1, 2). The relevant part of the Lagrangian is written as

L � �
3

X

i=1

2
X

j=1

Y ij
D ` i

LHN j
R � 1

2

2
X

k=1

m k
NNkC

R Nk
R +H.c., (1)

where ` i
L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

right-handed neutrinos N j
R (j = 1, 2). The relevant part of the Lagrangian is written as

L � �
3

X

i=1

2
X

j=1

Y ij
D ` i

LHN j
R � 1

2

2
X

k=1

m k
NNkC

R Nk
R +H.c., (1)

where ` i
L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

right-handed neutrinos N j
R (j = 1, 2). The relevant part of the Lagrangian is written as

L � �
3

X

i=1

2
X

j=1

Y ij
D ` i

LHN j
R � 1

2

2
X

k=1

m k
NNkC

R Nk
R +H.c., (1)

where ` i
L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

right-handed neutrinos N j
R (j = 1, 2). The relevant part of the Lagrangian is written as

L � �
3

X

i=1

2
X

j=1

Y ij
D ` i

LHN j
R � 1

2

2
X

k=1

m k
NNkC

R Nk
R +H.c., (1)

where ` i
L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

right-handed neutrinos N j
R (j = 1, 2). The relevant part of the Lagrangian is written as

L � �
3

X

i=1

2
X

j=1

Y ij
D ` i

LHN j
R � 1

2

2
X

k=1

m k
NNkC

R Nk
R +H.c., (1)

where ` i
L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

right-handed neutrinos N j
R (j = 1, 2). The relevant part of the Lagrangian is written as

L � �
3

X

i=1

2
X

j=1

Y ij
D ` i

LHN j
R � 1

2

2
X

k=1

m k
NNkC

R Nk
R +H.c., (1)

where ` i
L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

Nonunitarity: JHEP 10 (2006) 084

JHEP 12(2007) 061



Fixing the Matrices N and R
•We consider the two generations of heavy neutrinos

UMNS =

⎛

⎝

c12c13 s12c13 s13e
iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎞

⎠

×diag(1, e iρ, 1)

•We fix the parameters by the following neutrino oscillation data

sin2θ12 = 0.87, sin2θ23 = 1.0, sin2θ13 = 0.092(DayaBay) (12)

∆m2
12 = m2

2 −m2
1 = 7.6× 10−5eV 2,∆m2

23 = |m2
3 −m2

2| = 2.4× 10−3eV 2 (13)

•We study the Normal and Inverted hierarchies.
•The lightest mass eigenstate is massless. The diagonal mass matrices in
the NH and IH cases are

DNH = diag

(

0,
√

∆m2
12,

√

∆m2
12 +∆m2

23

)

, (14)

DIH = diag

(

√

∆m2
23 −∆m2

12,
√

∆m2
23, 0

)

. (15)
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Fixing(the(Matrices((((((((and((

• Assuming, R = mDM
−1

•The flavour eigenstate (ν) in terms of the mass eigenstates,

ν ≃ Nνm +RNm, N = (1 +
1

2
R∗RT )UMNS (2)

•UMNS is the usual neutrino mixing matrix to diagonalize mν as,

W+
µ

Nm

− g√
2
γµPLR

em

Z 0

Nm

− g
2cW

γµPLN †R

νm

LCC = − g√
2
Wµemγ

µPL (Nνm +RNm) + h.c ., (3)

LNC = − g

2cw
Zµ

[

νmγ
µPL(N †N )νm + Nmγ

µPL(R†R)Nm

]

− g

2cw
Zµ

[

νmγ
µPL(N †R)Nm + h.c .

]

(4)

em, νm, Nm are the three generations of the leptons in the vector form.
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(1, 2) element is constrained by µ ⇤ e�
(1, 3) element is constrained by ⇤ ⇤ e�
(2, 3) element is constrained by ⇤ ⇤ µ�

Diagonal elements are constrained by LEP experiment

sin2 ⇥12 0.87
sin2 ⇥23 1.00
sin2 ⇥13 0.092

�m2
12 = m2

2 �m2
1 7.6⇥ 10�5eV2

�m2
23 = |m2

3 �m2
2| 2.4⇥ 10�3eV2
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For the minimal scenario we consider the Normal 
Hierarchy(NH) and Inverted Hierarchy(IH) cases as 

where ✓W is the weak mixing angle. Through the mixing R↵i, the heavy neutrinos can

be produced at high energy colliders, which have been extensively studied [17–51]. For

example, the production cross section of the i-th generation heavy neutrino at the Large

Hadron Collider (LHC) through the process qq̄0 ! `Ni (ud̄ ! `+↵Ni and ūd ! `�↵Ni) is given

by

�(qq̄0 ! `↵Ni) = �LHC |R↵i|2, (7)

where �LHC is the production cross section of the SM neutrino when its mass is set to be

m i
N . Similarly, the production cross section at an e+e� collider such as the Large Electron-

Positron Collider (LEP) and the International Linear Collider (ILC) is given by

�(e+e� ! ⌫↵Ni) = �LC |R↵i|2, (8)

where �LC is the production cross section of the SM neutrino at an e+e� collider when its

mass is set to be m i
N , and we have used the approximation N †R ' U †

MNSR for |✏↵�| ⌧ 1

as we will find in the following.

The elements of the matrices N and R are constrained by the experimental data. In the

following analysis, we adopt, for the current neutrino oscillation data, sin2 2✓13 = 0.092 [4]

along with the other oscillation data [6]: sin2 2✓12 = 0.87, sin2 2✓23 = 1.0, �m2
12 = m2

2�m2
1 =

7.6 ⇥ 10�5 eV2, and �m2
23 = |m2

3 �m2
2| = 2.4 ⇥ 10�3 eV2. The neutrino mixing matrix is

given by

UPMNS =

0

B

B

B

@

C12C13 S12C13 S13ei�

�S12C23 � C12S23S13ei� C12C23 � S12S23S13ei� S23C13

S12C23 � C12C23S13ei� �C12S23 � S12C23S13ei� C23C13

1

C

C

C

A

0

B

B

B

@

1 0 0

0 ei⇢ 0

0 0 1

1

C

C

C

A

(9)

where Cij = cos ✓ij and Sij = sin ✓ij. We consider the Dirac CP -phase (�) and the Majorana

phase (⇢) as free parameters.

The minimal seesaw scenario predicts one massless eigenstate. For the light neutrino

mass spectrum, we consider both the normal hierarchy (NH) and the inverted hierarchy

(IH). In the NH case, the diagonal mass matrix is given by

DNH = diag

✓

0,
q

�m2
12,

q

�m2
12 +�m2

23

◆

, (10)

while in the IH case

DIH = diag

✓

q

�m2
23 ��m2

12,
q

�m2
23, 0

◆

. (11)
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3ICEPP, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
4aINFN Sezione di Pisa, dell’Università, Largo B. Pontecorvo 3, 56127 Pisa, Italy
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8bDipartimento di Fisica, dell’Università ‘‘Sapienza’’, Piazzale A. Moro, 00185 Roma, Italy

9aINFN Sezione di Genova, dell’Università, Via Dodecaneso 33, 16146 Genova, Italy
9bDipartimento di Fisica, dell’Università, Via Dodecaneso 33, 16146 Genova, Italy

10Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
11Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

12Novosibirsk State Technical University, 630092 Novosibirsk, Russia
13Joint Institute for Nuclear Research, 141980 Dubna, Russia

14aINFN Sezione di Lecce, dell’Università, Via per Arnesano, 73100 Lecce, Italy
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The analysis of a combined data set, totaling 3:6" 1014 stopped muons on target, in the search for the

lepton flavor violating decay !þ ! eþ" is presented. The data collected by the MEG experiment at

the Paul Scherrer Institut show no excess of events compared to background expectations and yield a new

upper limit on the branching ratio of this decay of 5:7" 10#13 (90% confidence level). This represents a

four times more stringent limit than the previous world best limit set by MEG.
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The lepton flavor violating !þ ! eþ" decay is pre-
dicted to have an unobservable low rate within the standard
model (SM) of elementary particle physics, despite the
existence of neutrino oscillations [1]. Conversely, the
majority of new physics models [2–5] beyond SM (BSM),
particularly in view of the recent measurements of a large
#13 at reactor [6–8] and accelerator [9] experiments, predict
measurable rates for this decay. An observation of the
!þ ! eþ" decay would therefore represent an unambig-
uous sign of BSM physics, whereas improvements in the
branching ratio upper limit constitute significant con-
straints on the parameter space, complementary to those
obtainable at high-energy colliders.

The present best upper limit on the !þ ! eþ" decay
branching ratio B (B< 2:4" 10#12 at 90% C.L.) was set
by the MEG experiment [10] with an analysis of the data
taken in the years 2009–2010, for a total number of 1:75"
1014 positive muons stopped on target.
In this Letter we present an updated analysis of the 2009–

2010 data sample, based on recently improved algorithms
for the reconstruction of positrons and photons together
with the analysis of the data sample collected in 2011
with a beam intensity of 3" 107 !þ=s, which corresponds
to 1:85" 1014 stopped muons on target. Furthermore the
combined analysis of the full 2009–2011 statistics is
presented.
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lepton flavor violating decay !þ ! eþ" is presented. The data collected by the MEG experiment at

the Paul Scherrer Institut show no excess of events compared to background expectations and yield a new
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four times more stringent limit than the previous world best limit set by MEG.
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The lepton flavor violating !þ ! eþ" decay is pre-
dicted to have an unobservable low rate within the standard
model (SM) of elementary particle physics, despite the
existence of neutrino oscillations [1]. Conversely, the
majority of new physics models [2–5] beyond SM (BSM),
particularly in view of the recent measurements of a large
#13 at reactor [6–8] and accelerator [9] experiments, predict
measurable rates for this decay. An observation of the
!þ ! eþ" decay would therefore represent an unambig-
uous sign of BSM physics, whereas improvements in the
branching ratio upper limit constitute significant con-
straints on the parameter space, complementary to those
obtainable at high-energy colliders.

The present best upper limit on the !þ ! eþ" decay
branching ratio B (B< 2:4" 10#12 at 90% C.L.) was set
by the MEG experiment [10] with an analysis of the data
taken in the years 2009–2010, for a total number of 1:75"
1014 positive muons stopped on target.
In this Letter we present an updated analysis of the 2009–

2010 data sample, based on recently improved algorithms
for the reconstruction of positrons and photons together
with the analysis of the data sample collected in 2011
with a beam intensity of 3" 107 !þ=s, which corresponds
to 1:85" 1014 stopped muons on target. Furthermore the
combined analysis of the full 2009–2011 statistics is
presented.
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8aINFN Sezione di Roma, dell’Università ‘‘Sapienza’’, Piazzale A. Moro, 00185 Roma, Italy
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The lepton flavor violating !þ ! eþ" decay is pre-
dicted to have an unobservable low rate within the standard
model (SM) of elementary particle physics, despite the
existence of neutrino oscillations [1]. Conversely, the
majority of new physics models [2–5] beyond SM (BSM),
particularly in view of the recent measurements of a large
#13 at reactor [6–8] and accelerator [9] experiments, predict
measurable rates for this decay. An observation of the
!þ ! eþ" decay would therefore represent an unambig-
uous sign of BSM physics, whereas improvements in the
branching ratio upper limit constitute significant con-
straints on the parameter space, complementary to those
obtainable at high-energy colliders.

The present best upper limit on the !þ ! eþ" decay
branching ratio B (B< 2:4" 10#12 at 90% C.L.) was set
by the MEG experiment [10] with an analysis of the data
taken in the years 2009–2010, for a total number of 1:75"
1014 positive muons stopped on target.
In this Letter we present an updated analysis of the 2009–

2010 data sample, based on recently improved algorithms
for the reconstruction of positrons and photons together
with the analysis of the data sample collected in 2011
with a beam intensity of 3" 107 !þ=s, which corresponds
to 1:85" 1014 stopped muons on target. Furthermore the
combined analysis of the full 2009–2011 statistics is
presented.
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The lepton flavor violating !þ ! eþ" decay is pre-
dicted to have an unobservable low rate within the standard
model (SM) of elementary particle physics, despite the
existence of neutrino oscillations [1]. Conversely, the
majority of new physics models [2–5] beyond SM (BSM),
particularly in view of the recent measurements of a large
#13 at reactor [6–8] and accelerator [9] experiments, predict
measurable rates for this decay. An observation of the
!þ ! eþ" decay would therefore represent an unambig-
uous sign of BSM physics, whereas improvements in the
branching ratio upper limit constitute significant con-
straints on the parameter space, complementary to those
obtainable at high-energy colliders.
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by the MEG experiment [10] with an analysis of the data
taken in the years 2009–2010, for a total number of 1:75"
1014 positive muons stopped on target.
In this Letter we present an updated analysis of the 2009–

2010 data sample, based on recently improved algorithms
for the reconstruction of positrons and photons together
with the analysis of the data sample collected in 2011
with a beam intensity of 3" 107 !þ=s, which corresponds
to 1:85" 1014 stopped muons on target. Furthermore the
combined analysis of the full 2009–2011 statistics is
presented.
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In order to make our discussion simple, we assume the degeneracy of the heavy neutrinos in

mass such as MN = m 1
N = m 2

N , so that the light neutrino mass matrix is simplified as

m⌫ =
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mDm
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MNSDNH/IHU
†
MNS, (12)

for the NH/IH cases. From this formula, we can parameterize the neutrino Dirac mass

matrix as [52]
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where X and Y are real parameters.

Due to its non-unitarity, the elements of the mixing matrix N are severely constrained by

the combined data from the neutrino oscillation experiments, the precision measurements

of weak boson decays, and the lepton-flavor-violating decays of charged leptons [53–57]. We

update the results by using more recent data on the lepton-favor-violating decays [58–60]:
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The most stringent bound is given by the (1, 2)-element which is from the constraint on the

lepton-flavor-violating muon decay µ ! e�. Using the general parametrization of the Dirac
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FIG. 1: The experimental constraints on the mixing matrix elements |R↵i|2 = |V↵i|2 in the NH

case. The allowed region is shaded. The results are shown with respect to �⇡ < � < ⇡.
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Now we perform a scan for the parameter set {�, ⇢, Y } and identify an allowed region for

which ✏(�, ⇢, Y ) satisfies the experimental constraints in Eq. (17).

In our analysis, we set MN = 100 GeV and vary the three parameters in the range of
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and 0  y  14 with the interval of 0.01875. For the
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Now we perform a scan for the parameter set {�, ⇢, Y } and identify an allowed region for

which ✏(�, ⇢, Y ) satisfies the experimental constraints in Eq. (17).

In our analysis, we set MN = 100 GeV and vary the three parameters in the range of
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Production of the heavy neutrino at the LHC
where ✓W is the weak mixing angle. Through the mixing R↵i, the heavy neutrinos can

be produced at high energy colliders, which have been extensively studied [17–51]. For

example, the production cross section of the i-th generation heavy neutrino at the Large

Hadron Collider (LHC) through the process qq̄0 ! `Ni (ud̄ ! `+↵Ni and ūd ! `�↵Ni) is given

by

�(qq̄0 ! `↵Ni) = �LHC |R↵i|2, (7)

where �LHC is the production cross section of the SM neutrino when its mass is set to be

m i
N . Similarly, the production cross section at an e+e� collider such as the Large Electron-

Positron Collider (LEP) and the International Linear Collider (ILC) is given by

�(e+e� ! ⌫↵Ni) = �LC |R↵i|2, (8)

where �LC is the production cross section of the SM neutrino at an e+e� collider when its

mass is set to be m i
N , and we have used the approximation N †R ' U †

MNSR for |✏↵�| ⌧ 1

as we will find in the following.

The elements of the matrices N and R are constrained by the experimental data. In the

following analysis, we adopt, for the current neutrino oscillation data, sin2 2✓13 = 0.092 [4]

along with the other oscillation data [6]: sin2 2✓12 = 0.87, sin2 2✓23 = 1.0, �m2
12 = m2

2�m2
1 =

7.6 ⇥ 10�5 eV2, and �m2
23 = |m2

3 �m2
2| = 2.4 ⇥ 10�3 eV2. The neutrino mixing matrix is

given by

UPMNS =

0

B

B

B

@

C12C13 S12C13 S13ei�

�S12C23 � C12S23S13ei� C12C23 � S12S23S13ei� S23C13

S12C23 � C12C23S13ei� �C12S23 � S12C23S13ei� C23C13

1

C

C

C

A

0

B

B

B

@

1 0 0

0 ei⇢ 0

0 0 1

1

C

C

C

A

(9)

where Cij = cos ✓ij and Sij = sin ✓ij. We consider the Dirac CP -phase (�) and the Majorana

phase (⇢) as free parameters.

The minimal seesaw scenario predicts one massless eigenstate. For the light neutrino

mass spectrum, we consider both the normal hierarchy (NH) and the inverted hierarchy

(IH). In the NH case, the diagonal mass matrix is given by

DNH = diag

✓

0,
q

�m2
12,

q

�m2
12 +�m2

23

◆

, (10)

while in the IH case

DIH = diag

✓

q

�m2
23 ��m2

12,
q

�m2
23, 0

◆

. (11)
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Through the Charged Current interaction

Mixing-squared

Put bounds on the mixing angle to constrain the 

production cross section

N
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W, W jj
BR(       )

right-handed neutrinos N j
R (j = 1, 2). The relevant part of the Lagrangian is written as

L � �
3

X

i=1

2
X

j=1

Y ij
D ` i

LHN j
R � 1

2

2
X

k=1

m k
NNkC

R Nk
R +H.c., (1)

where ` i
L (i = 1, 2, 3) and H are the SM lepton doublet of the i-th generation and the SM

Higgs doublet, respectively, and the Majorana mass matrix of the right-handed neutrinos is

taken to be diagonal without loss of generality. After the electroweak symmetry breaking,

we obtain the Dirac mass matrix as mD = YDp
2
v, where v = 246 GeV is the Higgs vacuum

expectation value. Using the Dirac and Majorana mass matrices, the neutrino mass matrix

is expressed as

M⌫ =

0

@

0 mD

mT
D mN

1

A . (2)

Assuming the hierarchy of |mij
D/m

k
N | ⌧ 1, we diagonalize the mass matrix and obtain the

seesaw formula for the light Majorana neutrinos as

m⌫ ' �mDm
�1
N mT

D. (3)

We express the light neutrino flavor eigenstate (⌫) in terms of the mass eigenstates of the

light (⌫m) and heavy (Nm) Majorana neutrinos such as ⌫ ' N ⌫m + RNm, where R =

mDm
�1
N , N =

⇣

1� 1
2
✏
⌘

UMNS with ✏ = R⇤RT and UMNS is the neutrino mixing matrix which

diagonalizes the light neutrino mass mass matrix as

UT
MNSm⌫UMNS = diag(m1,m2,m3). (4)

In the presence of ✏, the mixing matrix N is not unitary, namely N †N 6= 1.

In terms of the neutrino mass eigenstates, the charged current interaction can be written

as

LCC = � gp
2
Wµ`↵�

µPL

�

N↵j⌫mj +R↵jNmj

�

+H.c., (5)

where `↵ (↵ = e, µ, ⌧) denotes the three generations of the charged leptons, and PL =

(1� �5)/2. Similarly, the neutral current interaction is given by

LNC = � g

2 cos ✓W
Zµ

h

⌫mi�
µPL(N †N )ij⌫mj +Nmi�

µPL(R†R)ijNmj

+
n

⌫mi�
µPL(N †R)ijNmj +H.c.

oi

, (6)

3

>= 50%Leading
Many modes/ many ways to produce the heavy neutrinos at the colliders but (very 
small) mixings can spoil the game of search, but still we should hope for the best.

Phenomenological works by Atre, Antusch, 

Chen, Das et. al., Del-Aguila, Dev et. al., 

Fischer, Han, Mohapatra et. al., Okada et. al. 

Savedraa et.al.
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FIG. 1: The experimental constraints on the mixing matrix elements |R↵i|2 = |V↵i|2 in the NH

case. The allowed region is shaded. The results are shown with respect to �⇡ < � < ⇡.

=
1

mN

UMNS

p

DNH/IHO
⇤OT

p

DNH/IHU
†
MNS. (18)

Here, note that ✏(�, ⇢, Y ) is independent of X since

O⇤OT =

0

@

cosh2 Y + sinh2 Y �2i coshY sinhY

2i coshY sinhY cosh2 Y + sinh2 Y

1

A . (19)

Now we perform a scan for the parameter set {�, ⇢, Y } and identify an allowed region for

which ✏(�, ⇢, Y ) satisfies the experimental constraints in Eq. (17).

In our analysis, we set MN = 100 GeV and vary the three parameters in the range of

�⇡  �, ⇢  ⇡ with the interval of ⇡
20

and 0  y  14 with the interval of 0.01875. For the
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FIG. 2: The experimental constraints on the mixing matrix elements |R↵i|2 = |V↵i|2 in the NH

case. The allowed region is shaded. The results are shown with respect to Y .

NH case, we show in Fig. 1 our results on the mixing matrix element |R↵i|2 with respect

to �⇡ < � < ⇡. In each panel, the shaded region satisfies the experimental constraints

in Eq. (17). We have found |R↵i|2 < 2.94 ⇥ 10�4. Note that as in Eqs. (7) and (8), the

heavy neutrino production cross section is proportional to |R↵i|2 and hence the constraints

in Eq. (17) provide us with the upper bound on the cross section. The same results but with

respect to Y are shown in Fig. 2. For the IH case, the corresponding results are shown in

Fig. 3 and Fig. 4, respectively. Similarly to the NH case, we have found |R↵i|2 < 3.52⇥10�4.

We also show in Fig. 5 and Fig. 6 our results for a combination of the mixing parameters,

|VeNV ⇤
µN |2/(|VeN |2 + |VµN |2), in the NH and IH cases, respectively. For comparison, we list

7

Das, Okada: arXiv:1702.04688 for type-I seesaw and  
Das, Okada: arXiv:1207.3734 for the Inverse Seesaw case 
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respect to Y are shown in Fig. 2. For the IH case, the corresponding results are shown in

Fig. 3 and Fig. 4, respectively. Similarly to the NH case, we have found |R↵i|2 < 3.52⇥10�4.

We also show in Fig. 5 and Fig. 6 our results for a combination of the mixing parameters,

|VeNV ⇤
µN |2/(|VeN |2 + |VµN |2), in the NH and IH cases, respectively. For comparison, we list
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FIG. 3: Same as Fig. 1 but for the IH case.

in Table I the upper bounds on the mixing parameters from the collider experiments, for

MN = 100 GeV. We can see that the upper bounds on the mixing we have obtained are

more severe than those listed in Table I.

In summary, we have studied the minimal type-I seesaw scenario and the current experi-

mental bounds on the mixing between the heavy Majorana neutrinos and the SM neutrinos.

We have employed the general parameterization for the neutrino Dirac mass matrix so as

to reproduce all neutrino oscillation data. In this way, the model is controlled by only

three parameters, the Dirac CP -phase, one Majorana phase, and the (complex) angle of the

2⇥ 2 orthogonal matrix with the degenerate heavy neutrino mass MN = 100 GeV. We have
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in Table I the upper bounds on the mixing parameters from the collider experiments, for

MN = 100 GeV. We can see that the upper bounds on the mixing we have obtained are

more severe than those listed in Table I.

In summary, we have studied the minimal type-I seesaw scenario and the current experi-

mental bounds on the mixing between the heavy Majorana neutrinos and the SM neutrinos.

We have employed the general parameterization for the neutrino Dirac mass matrix so as

to reproduce all neutrino oscillation data. In this way, the model is controlled by only

three parameters, the Dirac CP -phase, one Majorana phase, and the (complex) angle of the

2⇥ 2 orthogonal matrix with the degenerate heavy neutrino mass MN = 100 GeV. We have
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in Table I the upper bounds on the mixing parameters from the collider experiments, for

MN = 100 GeV. We can see that the upper bounds on the mixing we have obtained are

more severe than those listed in Table I.

In summary, we have studied the minimal type-I seesaw scenario and the current experi-

mental bounds on the mixing between the heavy Majorana neutrinos and the SM neutrinos.

We have employed the general parameterization for the neutrino Dirac mass matrix so as

to reproduce all neutrino oscillation data. In this way, the model is controlled by only

three parameters, the Dirac CP -phase, one Majorana phase, and the (complex) angle of the

2⇥ 2 orthogonal matrix with the degenerate heavy neutrino mass MN = 100 GeV. We have
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Experiments Mixning angles Upper Bounds

EWPD-e[62–64] |VeN |2 1.7⇥ 10�3

EWPD-µ[62–64] |VµN |2 9.0⇥ 10�3

EWPD-⌧ [62–64] |V⌧N |2 4.2⇥ 10�3

L3[65] |V`N |2, ` = e, µ 2.2⇥ 10�3

Higgs-LHC[66] |V`N |2, ` = e, µ 3.4⇥ 10�3

LHC-e(ATLAS, 8 TeV)[67] |VeN |2 4.1⇥ 10�2

LHC-µ(ATLAS, 8 TeV)[67] |VµN |2 1.9⇥ 10�3

LHC-e(CMS, 8 TeV)[68] |VeN |2 1.1⇥ 10�2

LHC-µ(CMS, 8 TeV)[68] |VeN |2 4.6⇥ 10�3

LHC-e, µ(CMS, 8 TeV)[68]
|VeNV ⇤

µN |2

|VeN |2+|VµN |2 2.4⇥ 10�3

TABLE I: Upper bounds on the mixing parameters for MN = 100 GeV in the type-I seesaw

framework from the various collider experiments.

performed the parameter scan to identify the allowed parameter region which satisfies the

experimental constraints from the electroweak precision measurements and the lepton-flavor

violations. For the allowed parameter region, we have found the upper bound on the mixing

parameters to be |R↵i|2 . 10�4, which is more severe than those obtained from the search

for heavy Majorana neutrinos at the current LHC experiments. The region |R↵i|2 . 10�4

we have found can be tested at the High-Luminosity LHC or at a 100 TeV pp-collider in the

future. We have also performed parameter scan for the e↵ective neutrino mass relevant to
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EWPD-e[62–64] |VeN |2 1.7⇥ 10�3

EWPD-µ[62–64] |VµN |2 9.0⇥ 10�3

EWPD-⌧ [62–64] |V⌧N |2 4.2⇥ 10�3

L3[65] |V`N |2, ` = e, µ 2.2⇥ 10�3

Higgs-LHC[66] |V`N |2, ` = e, µ 3.4⇥ 10�3

LHC-e(ATLAS, 8 TeV)[67] |VeN |2 4.1⇥ 10�2

LHC-µ(ATLAS, 8 TeV)[67] |VµN |2 1.9⇥ 10�3

LHC-e(CMS, 8 TeV)[68] |VeN |2 1.1⇥ 10�2

LHC-µ(CMS, 8 TeV)[68] |VeN |2 4.6⇥ 10�3

LHC-e, µ(CMS, 8 TeV)[68]
|VeNV ⇤

µN |2

|VeN |2+|VµN |2 2.4⇥ 10�3

TABLE I: Upper bounds on the mixing parameters for MN = 100 GeV in the type-I seesaw

framework from the various collider experiments.

2⇥ 2 orthogonal matrix with the degenerate heavy neutrino mass MN = 100 GeV. We have

performed the parameter scan to identify the allowed parameter region which satisfies the

experimental constraints from the electroweak precision measurements and the lepton-flavor

violations. For the allowed parameter region, we have found the upper bound on the mixing

parameters to be |R↵i|2 . 10�4, which is more severe than those obtained from the search

for heavy Majorana neutrinos at the current LHC experiments. The region |R↵i|2 . 10�4

we have found can be tested at the High-Luminosity LHC or at a 100 TeV pp-collider in the

future. We have also performed parameter scan for the e↵ective neutrino mass relevant to

the neutrinoless double beta decay and found the range of 0.00154  |m⌫
ee|(eV)  0.00389

(NH case) and 0.0167  |m⌫
ee|(eV)  0.0473 (IH case), which are consistent with the current

experimental bound . 0.1 eV [69].

Although we have shown the results only for the case with the degenerate heavy neutrinos,

we have found that for non-generate case, the upper bound on the mixing parameters reduces

and the heavy neutrino production cross section becomes lower. In terms of the testability of

the type-I seesaw scenario at the future collider experiments, the degenerate mass spectrum

is preferable. Our parameter scan analysis in this letter is similar to that in Ref. [17], where

the inverse-seesaw scenario was considered. A crucial di↵erence of the inverse-seesaw scenario

9

Current Limits

[118] bundled in MadGraph with the ANTI-kT algorithm,
while the jets are clustered using FastJet [119]. To calculate
the hadronic cross sections, we use the CTEQ6L1 PDF
[120]. The hadronized events are passed through Delphes

[121] to simulate the detector response.
The selection cuts used in our analysis for optimizing the

signal-to-background are listed below for different center-
of-mass energies. For

ffiffiffi
s

p
¼ 8 TeV, we have imposed the

following cuts:
(i) Transverse momentum of the lepton: pl

T > 20 GeV.
(ii) Transverse momentum of the jets: pj1;2

T > 30 GeV.
(iii) Pseudorapidity of the lepton: jηlj < 2.5.
(iv) Pseudorapidity of the jets: jηj1;2 j < 2.5.
(v) Lepton-jet separation ΔRlj > 0.3 and jet-jet sepa-

ration Δjj > 0.4.
(vi) Invariant mass cut for the reconstruction of the of the

heavy neutrino and the gauge boson produced after
the heavy neutrino decay:mi − 20 < mi < mi þ 20,
where mi ¼ MN;mW or mZ depending on the
processes given by the Feynman diagrams in Fig. 4.
To reconstruct MN , we use the invariant mass mνjj
for Fig. 4(a) and mljj from Figs. 4(b) and 4(c).
The SM gauge bosons are reconstructed from the
invariant mass mjj. The various invariant mass

distributions are shown in Fig. 5 for a typical choice
MN ¼ 100 GeV for illustration.

For
ffiffiffi
s

p
¼ 14 TeV, we use the same selection cuts, except

for pl
T > 30 GeV and pj1;2

T > 32 GeV. For
ffiffiffi
s

p
¼ 100 TeV,

we use even stronger cuts, pl
T > 53 GeV and pj1;2

T >
35 GeV, while the other cuts remain the same as in the
8 TeV case. Our analysis is done for the l ¼ μ case only,
which gives better sensitivity than the l ¼ e case.
For the dominant SM background, we have considered

the irreducible backgrounds from the WW and WZ
processes. After examining the signal (S) and background
(B) efficiencies, we calculate the significance of the lνjj
channel, defined as

N ¼ Sffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p ; ð18Þ

where S ∝ jVlN j2. Our combined results for the three
channels shown in Fig. 4 are given in Fig. 6 as a function
of the heavy neutrino mass for two different choices of
jVlN j2 ¼ 0.01 (red) and 0.003 (blue) and for

ffiffiffi
s

p
¼ 14

(solid) and 100 TeV (dashed) with integrated luminosity of
3000 fb−1. The results for the

ffiffiffi
s

p
¼ 8 TeV case are not so

promising and are hence not shown here.
We find that for jVlN j2 ¼ 0.01 (at the edge of the current

upper limit) the lνjj channel has more than 3σ significance
in the mass range MN ¼ 70–120 GeV. For smaller jVlN j2,
the signal sensitivity decreases rapidly, and for
jVlN j2 ¼ 0.003, it cannot reach 3σ for any mass value.
Going to

ffiffiffi
s

p
¼ 100 TeV increases the significance in the

same mass range, but it drops rapidly on either side of this
mass range.

V. CONCLUSION

We have studied the sterile neutrino production in Higgs
decays mediated by the Dirac Yukawa coupling in the
singlet seesaw extension of the SM. This Yukawa coupling,
which is responsible for the light neutrino masses in the
seesaw mechanism, also induces the Higgs decay h → νN,
thus affecting its total decay width, as well as its partial

FIG. 5. lνjj invariant mass distributions for MN ¼ 100 GeV. The left panel corresponds to the W → jj final state, whereas the right
panel corresponds to Z → jj final state.

FIG. 6. Significance of the lνjj final state at
ffiffiffi
s

p
¼ 14 and

100 TeV for two different choices of jVlN j2.
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Remains unaltered

 with the mass of the N

Relaxed with the 

mass of N 

In our case the parameter regions will remain the same even with the higher values of the 
heavy neutrino mass, e. g., 1TeV and even high enough, however, the mixing angle squared 
raises up to O(10    ). -4



Conclusions

We have studied the minimal type-I seesaw scenario and the 
current experimental bounds on the mixing between the 
degenerate heavy Majorana neutrinos and SM neutrinos using 
the general Dirac Yukawa parameters in the light of Cases-
Ibarra conjecture.

To constrain the analysis we use neutrino oscillation data, LFV 
and LEP results. Hence we obtain indirect limits on the light-
heavy mixing angle which are stronger than the  current 
experimental bounds.

We have noticed that the parameter regions of the mixing 
angles remain unaltered with the change in mass even make it 
high enough.
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