

NA62 experiment at CERN: status and recent results

Evgueni Goudzovski

(University of Birmingham, United Kingdom) on behalf of the NA62 collaboration

Outline:

Introduction: K[±] decay experiments at CERN
 NA62 status and performance
 First NA62 results: search for heavy neutral leptons
 Summary

Weak Interactions and Neutrinos 2017 UC Irvine • 21 June 2017

Kaon programme at CERN

K[±] decay experiments at CERN

Experiment	NA48/2	NA62 (2007)	NA62
	(K [±])	(K [±])	(K+)
Data taking period	2003–2004	2007–2008	2016-2018
Beam momentum, GeV/c	60	74	75
RMS momentum bite, GeV/c	2.2	1.4	0.8
Spectrometer thickness, X_0	2.8%	2.8%	1.8%
Spectrometer P _T kick, MeV/c	120	265	270
M(K [±] $\rightarrow \pi^{\pm}\pi^{+}\pi^{-}$) resolution, MeV/c ²	1.7	1.2	0.8
K decays in fiducial volume	2×10 ¹¹	2×10 ¹⁰	1.2×10 ¹³
Main trigger	multi-track;	Min.bias +	Κ _{πνν} +
	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$	e±	
The NA62 experiment	NA48 detector		NA62 detector
Agin goal: collect 100 SM K ⁺ $\rightarrow \pi^+ \nu \nu$ decays BR ₋ =(8.4+1.0)×10 ⁻¹¹			

Suras et al., JHEP 1511 (2015) 033 Current K⁺ $\rightarrow \pi^+\nu\nu$ experimental status: BR = $(1.73 + 1.15) \times 10^{-10}$ from 7 candidates with expected background of 2.6 observed by BNL-E949. PRL101 (2008) 191802

E. Goudzovski / WIN 2017, UC Irvine, 21 June 2017

Rare kaon decays: $K \rightarrow \pi v \overline{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression: $A \sim (m_t/m_W)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- ✤ Hadronic matrix element is related to a measured quantity (K⁺→ $\pi^0e^+\nu$).
- SM precision surpasses any other FCNC process involving quarks.
- ✤ Measurement of $|V_{td}|$ complementary to those from B-B mixing or B⁰→ργ.

E. Goudzovski / WIN 2017, UC Irvine, 21 June 2017

SM branching ratios Buras et al., JHEP 1511 (2015) 033

Mode	$BR_{SM} \times 10^{11}$
K ⁺ → π^+ ν $\overline{\nu}$ (γ)	8.4±1.0
$K_L \rightarrow \pi^0 \nu \overline{\nu}$	3.4±0.6

The uncertainties are largely parametric (CKM)

Theoretically clean, almost unexplored, sensitive to new physics.

$K \rightarrow \pi v \overline{v}$: experiment vs theory

NA62 aim: collect O(100) SM K⁺ $\rightarrow \pi^+ v \bar{v}$ decays with <20% background in 3 years of data taking using a novel decay-in-flight technique.

<u>Signature</u>: high momentum K⁺ (75GeV/c) → low momentum π^+ (15–35 GeV/c).

<u>Advantages:</u> max detected K⁺ decays/proton (p_K/p₀≈0.2); efficient photon veto (>40 GeV missing energy)

Un-separated beam (6% kaons) \rightarrow high rates, additional background sources.

E. Goudzovski / WIN 2017, UC Irvine, 21 June 2017

$K^+ \rightarrow \pi^+ A'$, $A' \rightarrow invisible$

NA62 status & performance

NA62 collaboration, JINST 12 (2017) P05025

The NA62 detector

- ✤ Expected single event sensitivity for K⁺ decays: BR~10⁻¹².
- ★ Measured kinematic rejection factors (limited by beam pileup & MCS tails): 6×10^{-4} for K⁺→ $\pi^{+}\pi^{0}$, 3×10^{-4} for K→ $\mu^{+}\nu$.
- ↔ Hermetic photon veto: measured $\pi^0 \rightarrow \gamma\gamma$ decay suppression = 1.2×10^{-7} .
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁷ muon suppression.

E. Goudzovski / WIN 2017, UC Irvine, 21 June 2017

NA62 physics programme

- ♦ NA62 Run 2016–2018: focused on the "golden mode" $K^+ \rightarrow \pi^+ \nu \nu$.
 - \checkmark Trigger bandwidth for other physics is limited.
 - ✓ Several measurements at nominal SES~10⁻¹²: K⁺→ π^+ A', π^0 → $\nu\nu$.
 - ✓ A few measurements do not require extreme SES: $K^+ \rightarrow \ell^+ N$, ...
 - ✓ Sensitivities to most rare/forbidden decays are limited but still often world-leading (~10⁻¹⁰ to ~10⁻¹¹).
 - \checkmark Proof of principle for a broad rare & forbidden decay programme.
- NA62 Run 2021-2024: programme is under discussion. [Presented at Physics Beyond Colliders workshops, CERN, Sep 2016 & Mar 2017]
 - \checkmark Existing apparatus with a different trigger logic.
 - ✓ Rare/forbidden K⁺ and π⁰ decays at SES~10⁻¹²:
 K⁺ physics: K⁺→π⁺ℓ⁺ℓ⁻, K⁺→π⁺γℓ⁺ℓ⁻, K⁺→ℓ⁺νγ, K⁺→π⁺γγ, ...
 π⁰ physics: π⁰→e⁺e⁻, π⁰→e⁺e⁻e⁺e⁻, π⁰→3γ, π⁰→4γ, ...
 Searches for LFV/LNV: K⁺→π⁻ℓ⁺ℓ⁺, K⁺→π⁺µe, π⁰→µe, ...
 - ✓ Beam dump with ~ 10^{18} POT: hidden sector (long-lived HNL, DP, ALP).
 - ✓ Further $K^+ \rightarrow \pi^+ \nu \nu$ data collection.

Data collection

• Commissioning run 2015: minimum bias (~1% intensity) and $K_{\pi\nu\nu}$ test data.

- ✓ Most systems commissioned and meet the design requirements
- First high intensity run: 3 May 14 November 2016
 - ✓ Data collection at 40% of the nominal intensity (limited by beam quality)
- Long (~6 months) runs in 2017 (started in May) and 2018

Reached sensitivity of ~1 SM $K_{\pi\nu\nu}$ event with the 2016 data

High intensity run in 2016

- Stable data collection at ~40% of the nominal intensity; limited by beam structure, including the 50 Hz harmonics.
- Simultaneous data taking for $K_{\pi\nu\nu}$ and rare/exotic decays.
- Extrapolation to end of 2018 (12 months of live time): 7×10¹² K⁺ decays.
- With improved extraction and incremental improvements in efficiency, the target of 10¹³ K⁺ decays by end of 2018 is reachable.

E. Goudzovski / WIN 2017, UC Irvine, 21 June 2017

Beam tracker: the Gigatracker

Tracker design:

- Three Si pixel stations in the beam.
- ✤ Operation at beam rate up to 800 MHz.
- * In total, 54k pixels (300×300 μ m²).
- Thickness: <0.5% X₀ per station.

Performance at 40% beam intensity:

- ✤ Track reconstruction efficiency: 75%.
- ♦ Time resolution $\sigma(t_{\text{BeamTrack}}) ≈ 100 \text{ ps}$.
- Beam track mis-tagging probability: 1.7%.
- ✤ Spatial matching: beam/downstream track intersection, $\sigma_{CDA} \approx 1.5$ mm.

Kaon identification: KTAG

$K_{\pi\nu\nu}$ signal region definition

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Design kinematical resolution on m_{miss}^2 has been achieved $(\sigma=1.0\times10^{-3} \text{ GeV}^4/\text{c}^2).$

Measured kinematical background suppression:

✓ K⁺→ $\pi^{+}\pi^{0}$: 6×10⁻⁴; ✓ K⁺→ $\mu^{+}\nu$: 3×10⁻⁴.

Further background suppression:

- ✓ PID (calorimeters & Cherenkov detectors):
 µ suppression <10⁻⁷.
- ✓ Hermetic photon veto: suppression of $\pi^0 \rightarrow \gamma \gamma$ decays <10⁻⁷.

Identification with RICH & HAC

Photon rejection

Data 2016: $K_{\pi\nu\nu}$ sample

<u>K</u>⁺ $\rightarrow \pi^+ \nu \nu$ decay: ~50% of 2016 data is useful.

- * Most of trigger bandwidth dedicated to $K_{\pi\nu\nu}$.
- Analysis of 5% of this sample is presented.
- * No events found in $K_{\pi\nu\nu}$ signal region.
- Expect 1.3 SM $K_{\pi\nu\nu}$ decays from total 2016 sample.
- Preliminary statement on background: B/S<0.9.</p>
- Analysis in progress to increase signal acceptance and improve BKG suppression.

Related studies:

- ↔ Dark photon search in $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$:
 - ✓ look for invisible A' decays;
 - ✓ peak search in $(P_K P_{\pi} P_{\gamma})^2$ spectrum;
 - ✓ data-driven background estimate;
 - ✓ Expect improvement over the world data with 5% of the 2016 sample.
- ✤ Improvement on BR($\pi^0 \rightarrow \text{invisible}$) over the current limit of 2.7×10⁻⁷ is also possible.

Data 2016: 3-track sample

Lepton flavour and number conservation tests:

- Dedicated trigger streams for 3-track decays with leptons.
- Improved resolution, veto and PID: lower backgrounds wrt NA48/2.
- ↔ Expect to improve world limits on LFV/LNV K⁺ and π^0 decays.

Search for heavy neutral lepton production with 2015 data

Heavy neutral leptons in vMSM

$K^+ \rightarrow e^+N$: data sample

- Minimum bias (1% intensity); 11k SPS spills in 2015.
- K⁺ decays in fiducial volume: $N_{K} = (3.01 \pm 0.11) \times 10^{8}$.
- Beam tracker not available: kaon momentum is estimated as the beam average.

Search for HNL production signal

- HNL mass scan: 170 MeV/c² < m_N < 448 MeV/c², mass step = 1 MeV/c².
- Signal search window for each mass hypothesis: $\pm 1.5\sigma_m$.
- Background estimate: polynomial fits to mass spectra outside signal window.
- Background statistical errors estimated with dedicated MC simulation.
- For each m_N, frequentist confidence intervals for N_{HNL} obtained from numbers of observed and expected events and their uncertainties.

HNL production search: results

❖ Local signal significance never exceeds 3₀: no HNL signal is observed.
 ❖ Reached 10⁻⁶−10⁻⁷ limits for |U_{e4}|² in the 170−448 MeV/c² mass range.
 ❖ Major improvement foreseen with high intensity NA62 2016 data.

Summary

* NA62 run 2016–2018:

- ✓ Detector is fully operational since September 2016
- \checkmark Detector performance is close to design parameters
- ✓ The run is focused on the $K_{\pi\nu\nu}$ measurement (SES~10⁻¹²)
- \checkmark Large dataset at 40% of nominal intensity collected in 2016
- \checkmark Currently taking data at 50% of nominal intensity

First physics result from the 2015 run:

✓ Search for HNL production in $K^+ \rightarrow e^+ N$ decays with minimum bias data: $10^{-6}-10^{-7}$ limits on $|U_{e4}|^2$ in mass range 170-448 MeV/c²

Future prospects:

- \checkmark K_{*πνν*} analysis of 2016 data is on-going: expect O(1) SM events
- ✓ Further results with 2015 and 2016 data samples are expected in near future

92% of total BR(K⁺):

- Outside the signal kinematic region.
- ✤ Signal region is split into Region I and Region II by the K⁺→ $\pi^+\pi^0$ peak.

8% of total **BR(K**⁺) including multi-body:

Span across the signal region (not rejected by kinematic criteria).
Rejection relies on hermetic photon system, PID, sub-ns timing. 25

E. Goudzovski / WIN 2017, UC Irvine, 21 June 2017

Kaons at CERN beyond 2024

- ♦ Need to measure both $BR(K^+ \rightarrow \pi^+ \nu \nu)$ vs $BR(K_L \rightarrow \pi^0 \nu \nu)$: affected differently by NP.
- In the next few years, we expect:
 - ✓ NA62 @ CERN to measure **BR**(K⁺→ $\pi^+\nu\nu$) to **10%**;
 - ✓ KOTO @ J-PARC to observe a few $K_L \rightarrow \pi^0 v v$ events.
- ★ A new, possibly multi-purpose, K_L experiment at CERN focussed on K_L→ π^0 νν, with SES~0.5×10⁻¹² is under consideration for Run 4 (2026–2029).

KLEVER @ CERN:

- ✤ 30 GeV protons (300 kW); <p_{KL}>=2 GeV/c;
- Proposal: SES=8×10⁻¹² (~4 SM evts) with S/B=1.4 in three years.
- ✤ Short (100h) run in 2013: SES=1.3×10⁻⁸;
- Observed 1 event, expected 0.36; [CKM2014]
- Collected ×20 more data in 2015;
- Intention (no proposal): upgrade to 100 SM evts. E. Goudzovski / WIN 2017, UC Irvine, 21 June 2017

- ✤ 400 GeV protons; <p_{KL}>~100 GeV/c: complementary approach to KOTO.
- ♦ 60 SM events in 5 years with S/B≈1.
- Protons required: 5×10¹⁹ (NA62×10): target area & transfer line upgrade.
- Re-use NA62 infrastructure and parts of detector (LKr calorimeter; muon system).