

RESEARCH AND DEVELOPMENT FOR THE ISODAR EXPERIMENT

ON BEHALF OF THE ISODAR COLLABORATION

DAESALUS IsoDAR

WIN2017 06/23/2017

SAXANI@MIT.EDU

Sterile neutrino overview

Modern searches for $\sim 1 \text{ eV}$ scale light sterile neutrinos are motivated by a set of observed anomalies.

Oscillation Channel	Class	Anomalo signals (>
v_e disappearance $P(v_e \rightarrow v_e)$	Reactor/Source Experiments	GALLEX SAGE (v {Global Rea
v_{μ} disappearance $P(v_{\mu} \rightarrow v_{\mu})$	Long/Short Baseline Experiments	none
v_e appearance $P(v_\mu \rightarrow v_e)$	Short Baseline Experiments	LSND (* MiniBooNE

Many of the proposed experiments to test the light sterile neutrino hypothesis do not have sufficient sensitivity to make a definitive $>5\sigma$ statement.

Spencer N. Axani

Motivation for the IsoDAR experiment

The IsoDAR (Isotope Decay-A-Rest) experiment, paired with a kiloton detector like KamLAND, will be able to make a definitive statement about the existence of light sterile neutrinos.

- ▶ Rule out 3+1 global allowed region:
 - 20σ in 5 years
 - 5σ in 4 months
- ► The high statistics allow us to distinguish between a 3+1 and 3+2 sterile neutrino model.
- Collect the worlds largest sample of a low energy $\overline{\nu}_e$ -electron elastic scattering events.
- Beyond this, we also make innovations in:
 - Ion source development
 - Beam transport and injection
 - High current cyclotrons

Motivation for the IsoDAR experiment

IsoDAR will search for sterile neutrinos by accurately mapping out the short baseline oscillations through a single detector, over an L/E of 0.6 to 7 m/MeV.

Spencer N. Axani

- \overline{v}_e energy above radiogenic(>3MeV)

Event reconstruction (KamLAND):

- Vertex: $\sim 5 \text{cm} @ 6.4 \text{MeV}$
- Energy: $\sim 3\%$ @ 6.4MeV
- 92% detection efficiency for IBD events

Motivation for the IsoDAR experiment

Spencer N. Axani

Operation principles of IsoDAR

- 2. Accelerate 5 mA of H_2^+ to 60 MeV/amu
- 3. Impinge on a ⁹Be target. ⁷Li+n \rightarrow ⁸Li \rightarrow ⁸Be + e⁻ + \overline{v}_e

4. Map out oscillation in anti-electron neutrino disappearance within a kiloton scale detector like KamLAND

H₂⁺ production: our new multi-cusp ion source, MIST-1

Key design choices:

- Modular design
- Extraction plate cooling

Spencer N. Axani

H₂⁺ production: our new multi-cusp ion source, MIST-1

Spencer N. Axani

- The development of a new multi-cusp ion source, MIST-1, was funded in 2016 by NSF.
- Commissioning recently concluded and first beam was achieved in early 2017.
- ► MIST-1 optimization currently in-progress and we expect to have results soon.

• Rev. Sci. Inst. 87.2 (2016): 02B704.

2	2017

Pre-acceleration: RFQ injection into the cyclotron

Spencer N. Axani

Radio-Frequency Quadrupole (RFQ)

A single device that is able to both efficiently accelerate and bunch a high-current beam.

- great for accelerating low-energy ions
- very small emittance growth
- accelerates and focuses with a single field
- separates our ion species

Modern technology, and becoming pervasive in intensity frontier complexes like Fermilab.

As of yet, using an RFQ as a buncher for axial injection into cyclotron has not been realized.

Pre-acceleration: RFQ injection into the cyclotron

Spencer N. Axani

H₂⁺ Accelerator design

Spencer N. Axani

Energy at extraction	60 MeV/amu
Injected energy	35 keV/amu
Radius at extraction	1.99 m
Iron weight	450 tons
Harmonic	4th

Requirements:

- A compact accelerator that can fit into the Kamioka observatory. Mine entrance size restriction and weight limits.
- Extract 10 mA @ 60 MeV protons Innovations:
- ► Usage of H₂⁺:
 - decrease the space charge effects
 - 2 protons per ion
 - eliminates the problem of Lorentz stripping
- Inject highly bunched beam from an intense ion source.

- 3+1 and 3+2 sterile neutrino model.
- - H₂⁺ ion sources
 - RFQ axial injection
 - High-current cyclotrons

Summary

• IsoDAR is capable of making a definitive statement about light sterile neutrinos.

• In just 4 months of running, we can cover the global best fit allowed regions to 5σ .

• Accurately mapping out the oscillation wave will allow us to distinguish between a

The development of IsoDAR innovates on several key technologies:

THANKS FOR YOUR ATTENTION!

Particle trajectory and magnetic field simulation

Spencer N. Axani

Backup

- ◆40-80 eV electrons were injected into the multi-cusp field.
- Electrons were found to be contained primarily in the sub-20 Gauss region (white circle).
- The multi-cusp field "reflects" the mobile charged particles back into the center of the ion source.

Innovations: MIST-v1

Ehlers and Leung's LBL Source

10 column of SmCo magnets10 cm radius by 9 cm length

Axial plasma volume length: 2.0, 4.5 cm

Not water cooled.

Back plate biasing (observed a 30% increase in extracted curren

Magnetic configuration: plasma chamber/back plate

Spencer N. Axani

Backup

	MIST-v1
	12 columns of SmCo magnets
	7.5 cm radius by 7 cm length
	Axial plasma volume length: 1.5 - 5.0 cm
	Front plate and plasma chamber is water cooled
nt)	Back plate biasing and plasma chamber biasing
	Magnetic configuration: plasma chamber/back plate/front pla

IsoDAR's interest in RFQs

IsoDAR's interest in RFQs

- beam is highly divergent.
- aperture.

IsoDAR's interest in RFQs

The phase spread of each particle. 60% of the particles are contained within +/- 10 degrees of the synchronous phase

Energy versus particle phase

Horizontal phase space. We see it is diverging.

Backup

The beam at the exit of the RFQ is fairly round. Roughly 3 mm in radius.

Energy distribution centered around the design energy (80 keV). 60% contained within +/- 2 keV

Vertical phase space. We see it is converging.

Target design and cooling

Spencer N. Axani

Backup

Location in the mine

