

Searching for Muon to electron conversion: The Mu2e experiment at Fermilab

Richie Bonventre WIN 2017

Lawrence Berkeley National Lab

Mu2e: the basics

• Mu2e will search for neutrinoless conversion of a muon to an electron in a nuclear environment:

 $\mu^- N \rightarrow e^- N$

- This would violate **charged lepton flavor**, something that has never been seen before
- Any detection of charged lepton flavor violation would be an unambiguous sign of new physics! (SM contribution is $< 10^{-50}$)

History

Mu2e goal is a 10⁴ improvement!

Charged Lepton Flavor Violation

• Many models of new physics predict contributions to CLFV:

Kuno, Y. and Okada, Y. Rev. Mod. Phys. 73, 151 (2001). Marciano, Mori, and Roney, Ann. Rev. Nucl. Sci. 58 (2008). M. Raidal et al, Eur.Phys.J.C57:13-182, (2008). de Gouvea, A., and P. Vogel, arXiv:1303.4097 [hep-ph] (2013).

CLFV Effective Lagrangian

Measure the ratio of conversions to muon captures:

$$R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$$

- Signal of CLFV conversion is single monoenergetic electron
- Backgrounds:
 - Beam related: $\pi^- N o \gamma N'$, $\gamma o e^+ e^-$
 - Cosmic rays: $\mu^- \rightarrow e^- \nu_\mu \overline{\nu_e}$
 - Muon Decay in orbit: $\mu^- N
 ightarrow e^- N
 u_\mu \overline{
 u_e}$

Backgrounds: Decay in orbit $(\mu^- N \rightarrow e^- N \nu_\mu \overline{\nu_e})$

• Muon decay electron energy much lower than from conversion

Backgrounds: Decay in orbit $(\mu^- N \rightarrow e^- N \nu_\mu \overline{\nu_e})$

- Muon decay electron energy much lower than from conversion
- Recoil off nucleus pushes tail all the way up to conversion peak

Backgrounds: Decay in orbit $(\mu^- N \rightarrow e^- N \nu_\mu \overline{\nu_e})$

- Need to measure energy precisely to reject this background
- Maximize resolution while minimizing energy loss in detector materials

The Mu2e Experiment at Fermilab

- Stop a lot more muons! O(10¹⁸)
- Use timing to reject beam backgrounds
 - Pulsed proton beam 1.7 $\mu {\rm s}$ between pulses
 - Pions decay with 26 ns lifetime
 - Muons capture on Aluminum target with 864 ns lifetime

The Mu2e Collaboration

Over 200 scientists from 37 institutions in 6 countries

Mu2e Proton Beam

- 8 GeV 8 kW proton beam using protons from booster
- Resonantly extracted to get pulses of 4×10^7 protons separated by 1.7 μ s
- Runs simultaneously with NOVA

Proton extinction between beam pulses allows us to reject RPC events (π^- Al \rightarrow Mg* + γ)

- 700 ns delay followed by 1 μ s livegate
- Extinction factor (ratio of out-of-time protons to in-time protons) of 10⁻¹⁰ is needed

~25 m

- Consists of three superconducting solenoids:
 - Production Solenoid (PS)
 - Transport Solenoid (TS)
 - Detector Solenoid (DS)

- Consists of three superconducting solenoids:
 - Production Solenoid (PS)
 - Transport Solenoid (TS)
 - Detector Solenoid (DS)

- Consists of three superconducting solenoids:
 - Production Solenoid (PS)
 - Transport Solenoid (TS)
 - Detector Solenoid (DS)

- Consists of three superconducting solenoids:
 - Production Solenoid (PS)
 - Transport Solenoid (TS)
 - Detector Solenoid (DS)

Production Target and Solenoid produce slow muon beam in the reverse direction of the proton beam

- Protons hit production target and produce pions, decay to muons
- Magnetic mirror traps and redirects back to TS

Transport Solenoid sign selects charged particles

Detector solenoid directs electrons to detector elements

- Muons stop on thin aluminum foils, are captured or decay
 - Decay products emitted isotropically
 - Graded field directs electrons back through detector elements in helical path
 - Flat field in straw tracking volume
- High precision straw tracker for momentum measurement
- Electromagnetic calorimeter for PID

Straw Tracker provides the energy measurement to reject DIO background

 ${\sim}21{,}000$ low mass straw tubes in vacuum

- 5 mm diameter, 15 μ thick walls
- 80/20 ArCO2 gas mixture
- instrumented on both ends measure:
 - drift time to get radial position ($\sim 100 \mu m$ resolution)
 - time difference between ends to get position along straw (\sim 4cm resolution)
 - pulse size to identify highly ionizing proton hits

Straw Tracker provides the energy measurement to reject DIO background

- 18 stations, each containing 12x 120° panels for stereo measurement
- Blind to DIO electron momentum peak and beam flash
- Expected resolution better than 200 keV/c

8 straw tracker prototype used to tune simulation and verify expected resolution

pixel detectors used to determine cosmic ray track position

• Prototype also used to develop/test electronics and DAQ/firmware

8 straw tracker prototype used to tune simulation and verify expected resolution

Mu2e Detector Simulation

1 $\mu {\rm s}$ selection window after beam flash

- Detailed Geant4 simulation of full detector
- Simulate from production target forward (including backgrounds)
- Response tuned to data and detector prototype measurements

Mu2e Detector Simulation

Hits selected by track finder within $\pm 50~\text{ns}$ selection window around potential track

- Detailed Geant4 simulation of full detector
- Simulate from production target forward (including backgrounds)
- Response tuned to data and detector prototype measurements

Track Reconstruction

- Filter background hits (protons / Compton electrons)
- Least squares helix fit, followed by iterative Kalman Filter track fit

Calorimeter

- Two annular disks separated by half a "wavelength" (70cm) of electron's helical path
 - Maximize probability to hit at least one disk
- Each disk contains 860 Csl crystals read out by SiPMs
- 5% energy, 0.5 ns time, 1 cm position measurement independent of straw tracker
- Provides particle ID for track rejection

Calorimeter prototype agrees with simulation

- 3x3 matrix of undoped Csl crystals 3x3x20 cm³
- Tested under 80 to 120 MeV electron beam
- Energy response (7%) and time resolution (110 ps) meet specifications

Stopping Target Monitor measures capture rate

- Muons cascade to 1s state emitting x-rays
- HPGe detector monitor these x-rays to measure capture rate
- Normalization of measurement $R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$

Stopping Target Monitor measures capture rate

- Muons cascade to 1s state emitting x-rays
- HPGe detector monitor these x-rays to measure capture rate
- Normalization of measurement $R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$

- Expect cosmic rays to produce 1 conversion-like event per day
- 4 overlapping layers of scintillator, read out on both ends with SiPMs
- Covers entire DS, half of TS, better than 10^{-4} inefficiency

Expected backgrounds for 3 year run

Category	Background process		Estimated yield (events)
Intrinsic	Muon decay-in-orbit (DIO)		0.199 ± 0.092
	Muon capture (RMC)		$0.000 {}^{+0.004}_{-0.000}$
Late Arriving	Pion capture (RPC)		0.023 ± 0.006
	Muon decay-in-flight (µ-DIF)		< 0.003
	Pion decay-in-flight (π -DIF)		$0.001 \pm < 0.001$
	Beam electrons		0.003 ± 0.001
Miscellaneous	Antiproton induced		0.047 ± 0.024
	Cosmic ray induced		0.082 ± 0.018
		Total	0.36 ± 0.10

- $\bullet\,$ Fewer than ${\sim}0.5$ background events expected over entire run
- + 3.6 x 10^{20} protons on target over 3 years $\rightarrow \sim 10^{18}$ stopped muons

Sensitivity

- Single event sensitivity: $R_{\mu e} < 3 \times 10^{-17}$
- Typical SUSY prediction of $10^{-15} \rightarrow \sim \! 50$ signal events

Civil construction

Mu2e is fully approved! Moving ahead on schedule

Backup

AlCap

- Joint project by Mu2e and COMET
- Measure particles emitted after muon capture on Al

Beam structure

		Parameter	Design Value	Requirement	Unit
Beam Intensity Time Structure		Total protons on target	4.7×10 ²⁰	≥ 4.7×10 ²⁰	protons
	ſ	Time between beam pulses	1695	> 864	nsec
		Maximum variation in pulse separation	< 1	10	nsec
	J	Spill duration	43.1	> 20	msec
	٦	Beamline Transmission Window	230	< 250	nsec
		Transmission Window Jitter (rms)	< 5	<10	nsec
		Out-of-time extinction factor	1.6×10 ⁻¹²	$\le 10^{-10}$	
	ſ	Average proton intensity per pulse	3.9×10 ⁷	< 5.0×10 ⁷	protons/ pulse
	٦	Maximum Pulse to Pulse intensity variation	50	50	%
	ſ	Target rms spot size	1	0.5 - 1.5	mm
	1	Target rms beam divergence	0.5	< 4.0	mrad

Effect	Uncertainty in DIO	Uncertainty in CE single-
	background yield	event-sensitivity (×10 ⁻¹⁷)
MC Statistics	±0.02	±0.07
Theoretical Uncertainty	±0.04	-
Tracker Acceptance	±0.002	±0.03
Reconstruction Efficiency	±0.01	±0.15
Momentum Scale	+0.09, -0.06	±0.07
µ-bunch Intensity Variation	±0.007	±0.1
Beam Flash Uncertainty	±0.011	±0.17
µ-capture Proton Uncertainty	±0.01	±0.016
µ-capture Neutron Uncertainty	±0.006	±0.093
µ-capture Photon Uncertainty	±0.002	±0.028
Out-Of-Target µ Stops	±0.004	±0.055
Degraded Tracker	-0.013	+0.191
Total (in quadrature)	+0.10, -0.08	+0.35, -0.29

Tracker Occupancy

SUSY model constraints

SUSY model constraints

Tracker prototype

Extinction Monitor located downstream of production target

Extinction Monitor located downstream of production target

Spectrometer Magnet: Repurposed dipole magnet bends out low energy elections generated by muons stopping in the upstream silicon

Process	Current Limit	Next Generation exp.
$\tau \to \mu \eta$	BR < 6.5 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II, LHCb)
$\tau \to \mu \gamma$	BR < 6.8 E-8	
$ au ightarrow \mu \mu \mu$	BR < 3.2 E-8	
$\tau \to \mathrm{eee}$	BR < 3.6 E-8	
$K_L \rightarrow e\mu$	BR < 4.7 E-12	
$\mathrm{K^+} \rightarrow \pi^+ \mathrm{e^-} \mu^+$	BR < 1.3 E-11	
$B^0 \rightarrow e\mu$	BR < 7.8 E-8	
${\rm B^+} \rightarrow {\rm K^+e}\mu$	${\sf BR} < 9.1 \; {\sf E}{ m -}8$	
$\mu^+ \rightarrow {\rm e}^+ \gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
$\mu^+ \rightarrow \mathrm{e^+e^+e^-}$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
$\mu^- \mathrm{N} {\rightarrow} \mathrm{e}^- \mathrm{N}$	$R_{\mu e} < 7.0$ E-13	10 ⁻¹⁷ (Mu2e, COMET)

Determining model with CLFV

- Beam backgrounds reduced by degrader
 - Pions have half the range in CH_2 compared to muons
- Limit: 7×10^{-13} (90% confidence) on Au

Previous experiments: SINDRUM II

Achieving required beam extinction

- Beam from delivery ring starts with 10^{-4} extinction
- 2 AC dipoles coupled with collimators expected to bring extinction to 10^{-12}

More prototypes

TS prototype module

Cosmic ray veto