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Mu2e: the basics

• Mu2e will search for neutrinoless conversion of a muon to an

electron in a nuclear environment:

µ−N → e−N

• This would violate charged lepton flavor, something that

has never been seen before

• Any detection of charged lepton flavor violation would be an

unambiguous sign of new physics! (SM contribution is

< 10−50)
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History

Mu2e goal is a 104 improvement!
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Charged Lepton Flavor Violation

• Many models of new physics predict contributions to CLFV:

Kuno, Y. and Okada, Y. Rev. Mod. Phys. 73, 151 (2001).
Marciano, Mori, and Roney, Ann. Rev. Nucl. Sci. 58 (2008).
M. Raidal et al, Eur.Phys.J.C57:13-182, (2008).
de Gouvea, A., and P. Vogel, arXiv:1303.4097 [hep-ph] (2013).
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CLFV Effective Lagrangian

LCLFV =
mµ

(1+κ)Λ2µRσµνeLF
µν + κ

(1+κ)Λ2µLγµeL

(

∑

q=u,d qLγ
µqL

)
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Bernstein, de Gouvea

• loop: κ ≪ 1, µN→ eN and

µ → eγ

• contact: κ ≫ 1, µN→ eN

only

• Complementary to LHC:

can probe mass scales up to

104 TeV
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Measuring µ to e conversion

Measure the ratio of conversions to muon captures:

Rµe = µ
−+A(Z ,N)→e−+A(Z ,N)

µ−+A(Z ,N)→νµ+A(Z−1,N)

• Signal of CLFV conversion is single monoenergetic electron

• Backgrounds:

• Beam related: π−
N → γN

′, γ → e
+
e
−

• Cosmic rays: µ−
→ e

−
νµνe

• Muon Decay in orbit: µ−
N → e

−
Nνµνe
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Backgrounds: Decay in orbit (µ−
N → e

−
Nνµνe)

• Muon decay electron energy much lower than from conversion
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Backgrounds: Decay in orbit (µ−
N → e

−
Nνµνe)

• Muon decay electron energy much lower than from conversion

• Recoil off nucleus pushes tail all the way up to conversion peak
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Backgrounds: Decay in orbit (µ−
N → e

−
Nνµνe)

• Need to measure energy precisely to reject this background

• Maximize resolution while minimizing energy loss in detector

materials
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The Mu2e Experiment at Fermilab

• Stop a lot more muons! O(1018)

• Use timing to reject beam backgrounds

• Pulsed proton beam 1.7 µs between pulses

• Pions decay with 26 ns lifetime

• Muons capture on Aluminum target with 864 ns lifetime
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The Mu2e Collaboration

Over 200 scientists from 37 institutions in 6 countries
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Mu2e Proton Beam

• 8 GeV 8 kW proton beam

using protons from booster

• Resonantly extracted to get

pulses of 4x107 protons

separated by 1.7 µs

• Runs simultaneously with

NOVA
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Proton extinction between beam pulses allows us to reject RPC

events (π− Al → Mg∗
+ γ)

Live Window 

Prompt%background%

Signal%

Proton%pulse% Proton%pulse%

• 700 ns delay followed by 1 µs livegate

• Extinction factor (ratio of out-of-time protons to in-time

protons) of 10−10 is needed
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Mu2e experimental setup

• Consists of three superconducting solenoids:

• Production Solenoid (PS)

• Transport Solenoid (TS)

• Detector Solenoid (DS)
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Production Target and Solenoid produce slow muon beam in

the reverse direction of the proton beam

• Protons hit production target and produce pions, decay to

muons

• Magnetic mirror traps and redirects back to TS
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Transport Solenoid sign selects charged particles
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Detector solenoid directs electrons to detector elements

• Muons stop on thin aluminum foils, are captured or decay
• Decay products emitted isotropically

• Graded field directs electrons back through detector elements in

helical path

• Flat field in straw tracking volume

• High precision straw tracker for momentum measurement

• Electromagnetic calorimeter for PID
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Straw Tracker provides the energy measurement to reject DIO

background

∼21,000 low mass straw tubes in vacuum

• 5 mm diameter, 15 µ thick walls

• 80/20 ArCO2 gas mixture

• instrumented on both ends -
measure:

• drift time to get radial position

(∼ 100µm resolution)

• time difference between ends to get

position along straw (∼ 4cm

resolution)

• pulse size to identify highly ionizing

proton hits
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Straw Tracker provides the energy measurement to reject DIO

background

• 18 stations, each containing 12x 120◦

panels for stereo measurement

• Blind to DIO electron momentum peak

and beam flash

• Expected resolution better than 200

keV/c
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8 straw tracker prototype used to tune simulation and verify

expected resolution

ATLAS

pixel detectors used to determine cosmic ray track position

• Prototype also used to develop/test electronics and

DAQ/firmware
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8 straw tracker prototype used to tune simulation and verify

expected resolution
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Mu2e Detector Simulation

1 µs selection window after beam flash

• Detailed Geant4 simulation of full detector

• Simulate from production target forward (including

backgrounds)

• Response tuned to data and detector prototype measurements
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Mu2e Detector Simulation

Hits selected by track finder within ±50 ns selection window around potential track

• Detailed Geant4 simulation of full detector

• Simulate from production target forward (including

backgrounds)

• Response tuned to data and detector prototype measurements
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Track Reconstruction

• Filter background hits (protons / Compton electrons)

• Least squares helix fit, followed by iterative Kalman Filter

track fit
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Calorimeter

• Two annular disks separated by half a “wavelength” (70cm)
of electron’s helical path

• Maximize probability to hit at least one disk

• Each disk contains 860 CsI crystals read out by SiPMs

• 5% energy, 0.5 ns time, 1 cm position measurement

independent of straw tracker

• Provides particle ID for track rejection
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Calorimeter prototype agrees with simulation

• 3x3 matrix of undoped CsI crystals 3x3x20 cm3

• Tested under 80 to 120 MeV electron beam

• Energy response (7%) and time resolution (110 ps) meet

specifications
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Stopping Target Monitor measures capture rate

• Muons cascade to 1s state emitting x-rays

• HPGe detector monitor these x-rays to measure capture rate

• Normalization of measurement Rµe = µ
−+A(Z ,N)→e−+A(Z ,N)

µ−+A(Z ,N)→νµ+A(Z−1,N)
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Cosmic ray veto

• Expect cosmic rays to produce 1 conversion-like event per day

• 4 overlapping layers of scintillator, read out on both ends with

SiPMs

• Covers entire DS, half of TS, better than 10−4 inefficiency
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Expected backgrounds for 3 year run

• Fewer than ∼0.5 background events expected over entire run

• 3.6 x 1020 protons on target over 3 years → ∼ 1018 stopped

muons
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Sensitivity

• Single event sensitivity: Rµe < 3x10−17

• Typical SUSY prediction of 10−15 → ∼50 signal events
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Civil construction
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Mu2e is fully approved! Moving ahead on schedule
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Backup
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AlCap

• Joint project by Mu2e and COMET

• Measure particles emitted after muon capture on Al
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Beam structure
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Beam requirements
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Systematics

 

Effect Uncertainty in DIO 

background yield 

Uncertainty in CE single-

event-sensitivity (×10
-17

) 

MC Statistics ±0.02 ±0.07 

Theoretical Uncertainty ±0.04 - 

Tracker Acceptance ±0.002 ±0.03 

Reconstruction Efficiency ±0.01 ±0.15 

Momentum Scale +0.09, -0.06 ±0.07 

µ-bunch Intensity Variation ±0.007 ±0.1 

Beam Flash Uncertainty ±0.011 ±0.17 

µ-capture Proton Uncertainty ±0.01 ±0.016 

µ-capture Neutron Uncertainty ±0.006 ±0.093 

µ-capture Photon Uncertainty ±0.002 ±0.028 

Out-Of-Target µ Stops ±0.004 ±0.055 

Degraded Tracker -0.013 +0.191 

Total (in quadrature) +0.10, -0.08 +0.35, -0.29 

34 / 29



Tracker Occupancy
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SUSY model constraints
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SUSY model constraints
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Tracker prototype

STRAW MEASUREMENT                                                                   Drift time (ns)
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Extinction Monitor located downstream of production target
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Extinction Monitor located downstream of production target
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Types of CLFV measurements

Process Current Limit Next Generation exp.

τ → µη BR < 6.5 E-8 10−9 - 10−10 (Belle II, LHCb)

τ → µγ BR < 6.8 E-8

τ → µµµ BR < 3.2 E-8

τ → eee BR < 3.6 E-8

KL →eµ BR < 4.7 E-12

K+ → π+e−µ+ BR < 1.3 E-11

B0 →eµ BR < 7.8 E-8

B+ →K+eµ BR < 9.1 E-8

µ+ →e+γ BR < 4.2 E-13 10−14 (MEG)

µ+ →e+e+e− BR < 1.0 E-12 10−16 (PSI)

µ−N→e−N Rµe < 7.0 E-13 10−17 (Mu2e, COMET)
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Determining model with CLFV
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Previous experiments: SINDRUM II

• Beam backgrounds reduced by degrader

• Pions have half the range in CH2 compared to muons

• Limit: 7x10−13 (90% confidence) on Au
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Previous experiments: SINDRUM II
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Achieving required beam extinction

• Beam from delivery ring starts with 10−4 extinction

• 2 AC dipoles coupled with collimators expected to bring

extinction to 10−12
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More prototypes

Cosmic ray veto
TS prototype module
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