

Recent CMS publications:CMS-PAS-SMP-17-004PRL 114 (2015) 051801CMS-PAS-SMP-16-006CMS-PAS-SMP-16-004CMS-PAS-SMP-16-017CMS-PAS-SMP-16-019Phys. Lett. B 766 (2017) 268Eur. Phys. J. C 77 (2017) 236hep-ex:arXiv:1612.09256arXiv:1702.03025

Recent Multi-boson Cross Section Measurements at CMS

The 26th International Workshop on Weak Interactions and Neutrinos (WIN2017)

Daneng Yang for the CMS Collaboration

June 20th 2017 Irvine, CA

Outline

- Introduction: Electroweak physics at CMS
- Resent di-boson measurements
- Resent tri-boson measurements
- Electroweak di-boson measurements
- Limits on anomalous gauge couplings
- Outlook

Electroweak physics at CMS

- High magnetic field, energy resolutions and quality in tracking etc. enable fully reconstruction of final state particles other than neutrino. Particle flow algorithm improves JER and MET resolution.
- LHC has exceeded design Luminosity
- 2016 max peak lumi: 1.5×10^{34} $cm^{-2}s^{-1}$ with pileup ~ 50

Multi-boson cross section measurements at CMS

- Multi-boson productions are important backgrounds for SM Higgs studies and new physics searches
- Multi-boson measurements are also probes of non-Abelian gauge structure and EW symmetry breaking

Theoretical advancement (di-bosons)

- NLO QCD corrections available for all diboson processes, including correlations and off-shell effects
- NNLO QCD predictions available for all diboson processes
- NLO EW corrections implemented in automated way.

For a list of references, see Stefan Kallweit's talk at SM@LHC 2017:https://indico.cern.ch/event/570151/contributions/252 4694/attachments/1452009/2239339/Kallweit.pdf

Experimental advancement (di-bosons)

- Several 13 TeV measurements
 - ZZ (full dataset) CMS PAS SMP-16-017
 - W⁺W⁻ (2015 data) CMS PAS SMP-16-006
 - WZ (2015 data) Phys. Lett. B 766 (2017) 268
 - Z(vv)γ (2015 data) CMS PAS SMP-16-004
- Wγ cross section in agreement with NNLO QCD calculation: arXiv.1504.01330
- All diboson inclusive measurements are systematic uncertainty dominated.

Recent di-boson measurements

Inclusive cross section measurements

13 TeV WZ cross section measurement

(2015 data only) Phys. Lett. B 766 (2017) 268

The fiducial WZ $\rightarrow \ell \nu \ell' \ell'$ cross section for $p_T^{\ell'} > 20, 10 \text{ GeV}, p_T^{\ell} > 20 \text{ GeV}$, all leptons within $|\eta| < 2.5, 60 < m_{\ell'\ell'} < 120 \text{ GeV}$, and invariant mass of any same-flavor opposite-sign lepton pair above 4 GeV is

 $\sigma_{\rm fid}(\rm pp \rightarrow WZ \rightarrow \ell \nu \ell' \ell') = 258 \pm 21 \, ({\rm stat})^{+19}_{-20} \, ({\rm syst}) \pm 8 \, ({\rm lumi}) \, {\rm fb},$

corresponding to a total cross section for the range $60 < m_{\ell'\ell'} < 120 \,\text{GeV}$ of

 $\sigma(\rm pp \rightarrow WZ) = 39.9 \pm 3.2~(stat)^{+2.9}_{-3.1}~(syst) \pm 0.4~(theo) \pm 1.3~(lumi)~\rm pb.$

 $\boxed{\begin{array}{c} \text{Inclusive measurement} \\ \sigma(\text{pp} \rightarrow \text{WZ} + X) \mathcal{B}(\text{W} \rightarrow \ell \nu) \mathcal{B}(Z \rightarrow \ell' \ell') = (1 - f_{\tau}) \frac{N_{\text{obs}} - N_{\text{bkg}}}{\epsilon_{\text{sig}} \mathcal{L}}, \end{array}}$

WZ total cross section for different pp c.m.

energies. (Eur. Phys. J. C 77 (2017) 236)

- Stat. uncertainty: inner bars
- Stat. and syst. uncertainties sum in quadrature: outer bars

We start taking benifit from NNLO theoretical developments

Inclusive cross section measurements

W⁺W⁻ cross section measurement

ZZ cross section measurement

Category	Value \pm stat. \pm exp. syst. \pm theo. syst. \pm lumi. [pb]
0-jet	$113.6 \pm 6.3 \pm 5.1 \pm 6.5 \pm 3.3$
1-jet	$135.3 \pm 15.4 \pm 34.0 \pm 14.4 \pm 6.0$
Combination	$115.3 \pm 5.8 \pm 5.7 \pm 6.4 \pm 3.6$

$$\frac{113.6 \pm 6.3 \pm 5.1 \pm 6.5 \pm 3.3}{135.3 \pm 15.4 \pm 34.0 \pm 14.4 \pm 6.0}$$
d
pination $115.3 \pm 5.8 \pm 5.7 \pm 6.4 \pm 3.6$
 $\sigma^{\text{NNLO}}(\text{pp} \rightarrow \text{W}^+\text{W}^-) = 120.3 \pm 3.6 \text{ pb}$

Stat. and syst. uncertainties sum in quadrature: outer bars

ZZ total cross section for different pp c.m. energies.

ZZ->4I: First diboson measurement with **full 2016 dataset** (35.9 *fb*⁻¹): CMS-PAS-SMP-16-017

$ZZ \rightarrow 4I$ cross section (First diboson measurement with full 2016 dataset)

$$\sigma_{\rm fid}(\rm pp \to Z \to 4\ell) = 29.7 \pm 1.4 \,({\rm stat})^{+2.0}_{-1.8} \,({\rm syst}) \pm 0.8 \,({\rm lumi}) \,{\rm fb},$$

 $\sigma_{\rm fid}(\rm pp \to ZZ \to 4\ell) = 42.2 \pm 1.4 \,({\rm stat})^{+1.6}_{-1.5} \,({\rm syst}) \pm 1.1 \,({\rm lumi}) \,{\rm fb}.$

Z----4l branching fraction measurement $Z \rightarrow \ell^+ \ell^- \gamma^* \rightarrow 4\ell$

 $\sigma(pp \to Z)\mathcal{B}(Z \to 4\ell) = 243.8^{+8.3}_{-8.1} (stat)^{+9.3}_{-8.8} (syst)^{+4.0}_{-4.0} (theo) \pm 6.3 (lumi) \, \text{fb. CMS-PAS-SMP-16-017}$

$$\mathcal{B}(Z \to 4\ell) = \frac{\sigma(\mathrm{pp} \to Z \to 4\ell)}{\mathcal{C}_{80-100}^{60-120} \, \sigma(\mathrm{pp} \to Z \to \ell^+ \ell^-) / \mathcal{B}(Z \to \ell^+ \ell^-)}'$$

 $\mathcal{B}(Z \to 4\ell) = 4.74^{+0.16}_{-0.16} \text{ (stat)}^{+0.18}_{-0.17} \text{ (syst)} \pm 0.08 \text{ (theo)} \pm 0.12 \text{ (lumi)} \times 10^{-6}$

MG5_aMC@NLO

 4.6×10^{-6}

Differential cross section measurement

CMS-PAS-SMP-16-017

11

Azimuthal separation and ΔR between the two Z-bosons

Normalized to fiducial cross section; NLO in QCD, LO in QED

Cross section measurement	Flaucial requirements
Common requirements	$p_{ m T}^{\ell_1} > 20{ m GeV}$, $p_{ m T}^{\ell_2} > 10{ m GeV}$, $p_{ m T}^{\ell_{3,4}} > 5{ m GeV}$,
	$ \eta^\ell <$ 2.5, $m_{\ell^+\ell^-} >$ 4 GeV (any opposite-sign same-flavor pair)
$Z \rightarrow 4\ell$	$m_{Z_1} > 40 \mathrm{GeV}$
	$80 < m_{4\ell} < 100 \text{GeV}$
$ZZ \rightarrow 4\ell$	$60 < m_{Z_1}, m_{Z_2} < 120 \text{GeV}$

8 TeV differential measurement

CMS

19.4 fb⁻¹ (8 TeV) $\frac{1}{\sigma}$ d σ (WW + 0 jets)/d $\Delta \phi_{ee}$ Data Madgraph MC@NLO Powheg 10-1.5 Theory / Data Madgraph+Pythia normalized to $\sigma_{_{ m NNLO}}$ 0.5 1.5 Theory / Data MC@NLO+Herwig normalized to σ_{NNLO} 0.5 1.5 Theory / Data owheg+Pythia normalized to σ_{NNI} 0.5 2 2.5 0.5 1.5 3 0 $\Delta \phi_{\ell\ell}$ (rad)

WZ -> 3IvEur. Phys. J. C (2017) 77: 236 Shape in agreement with theory Data~11% higher than NLO. In good agreement with NNLO calculation.

 W^+W^- ->lvlv (8 TeV), Eur. Phys. J. C 76 (2016) 401 **Overall agreement** Discrepancy observed in $\Delta \phi_{II}$ distribution

$Z(\rightarrow \nu\nu)\gamma$ fiducial cross section measurements

13 TeV Z($\rightarrow \nu \nu$) γ cross section measurement

(2015 data only) CMS-PAS-SMP-16-004

- SM production only from initial state radiation
- Important background for Dark Matter searches (monophoton)

Fiducial selections: pT(γ)>175 GeV, $|\eta(\gamma)| < 1.44$

 $\sigma_{\rm fid} = 66.5 \pm 13.6 \,({\rm stat}) \pm 14.3 \,({\rm syst}) \pm 2.2 \,({\rm lumi}) \,{\rm fb}$

In agreement with NNLO theoretical prediction! (JHEP07(2015)085)

 σ_{NNLO} = 65.5±3.3 fb

Tri-boson measurements

ander and the state of the state of the state

Tri-boson measurements

Tri-boson measurements

Wγγ and Zγγ productions CMS-PAS-SMP-15-008

$$\begin{split} \sigma^{\text{NLO}}_{W^{\pm}\gamma\gamma} &\cdot \text{BR} \left(W \to \ell \nu \right) = 4.76 \pm 0.53 \, \text{fb} \text{ (Madgraph)} \\ \sigma^{\text{fid}}_{W^{\pm}\gamma\gamma} &\cdot \text{BR} \left(W \to \ell \nu \right) = 6.0 \pm 1.8 \, (\text{stat}) \pm 2.3 \, (\text{syst}) \pm 0.2 \, (\text{lumi}) \, \text{fb} \end{split}$$

EW di-boson measurements

e dan ing san san san sin sin san sin san sin sin san san san san sa san sa sa sa

Pure EW production is sensitive to the gauge structure of underlying theory and can

be sensitive to new physics

- Large QCD-induced background
- Use vector boson fusion/scattering

to enhance EW contribution

EW VV+2jets	CMS 8 TeV	
W [±] W [±] →IvIv	PRL 114 (2015) 051801 obs. 1.9σ (exp. 2.9σ)	
Wγ→Ivγ	arXiv:1612.09256 obs. 2.7σ (exp. 1.5σ)	
Zγ→IIγ	arXiv:1702.03025 Evidence : obs. 3.0σ (exp. 2.1σ)	
EW VV+2jets	CMS 13 TeV	
EW VV+2jets W [±] W [±] →IvIv	CMS 13 TeV First VBS observation CMS PAS SMP-17-004	

13 TeV Same sign WW scattering First VBS observation!

CMS PAS SMP-17-004

13 TeV ZZ+jets differential cross section measurement and EW ZZ production Full 2016 dataset (SMP-16-019)

Requiring at least two jets

Distribution of

Differential cross section as a function of the multiplicity

VBS signal-enriched selection: mjj>400 GeV, |η(j,j)|>2.4 +BDT optimization

 $\sigma_{\rm fid}(\text{EW pp} \rightarrow ZZjj \rightarrow \ell\ell\ell\ell'\ell'jj) = 0.40^{+0.21}_{-0.16}(\text{stat})^{+0.13}_{-0.09}(\text{syst}) \text{ fb}$

obs. 2.7 σ (exp. 1.6 σ)

8 TeV Wγ scattering arXiv:1612.09256

Expected significance: 1.5 σ Observed significance: 2.7 σ σ_{fid} = 10.8 ± 4.1(stat) ± 3.4(syst) ± 0.3(lumi)fb

8 TeV Zγ scattering arXiv:1702.03025

Expected significance: 2.1 σ Observed significance: 3.0 σ σ_{fid} = 1.86^{+0.90}_{-0.75}(stat)^{+0.34}_{-0.26}(syst) ± 0.05(lumi)fb

Limits on anomalous gauge couplings

Anomalous Gauge Couplings

Probing gauge boson self interactions at the LHC

- Within the SM, the Gauge Lagrangian gives 6 vertices. Pure neutral couplings not allowed.
- Extending the SM in effective field theory

 C,P conserving charged aTGCs (arXiv:hepph/9601233v1)

$$\begin{array}{lll} \Delta g_1^Z \equiv (g_1^Z - 1) & \equiv \tan \theta_W \delta_Z \ , & \Delta \kappa_\gamma \equiv (\kappa_\gamma - 1) & \equiv x_\gamma \ , \\ & \Delta \kappa_Z \equiv (\kappa_Z - 1) & \equiv \tan \theta_W (x_Z + \delta_Z) \ , \\ & \lambda_\gamma & \equiv y_\gamma, \quad \lambda_Z & \equiv \tan \theta_W y_Z \ . \end{array}$$

Constraints from gauge invariance: $\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_\gamma tan^2 \theta_W \quad \lambda_\gamma = \lambda_Z$

Anomalous Gauge Couplings

Probing gauge boson self interactions at the LHC

Neutral aTGCs

- CP-violating f_4^V , CP-conserving f_5^V (Nucl. Phys. B282 (1987) 253)
- CP-violating h_1^V , h_2^V , CP-conserving h_3^V , h_4^V

aQGCs

- LEP parameterization considers dim-6 anomalous couplings: **not** consistent with a symmetry breaking sector with a Higgs boson.
- Assuming SM gauge symmetry, no TGCs and Dimension 8, we have many QGCs (Phys.Rev.D74:073005,2006)

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0}, \mathcal{L}_{S,1}$	X	Х	Х	0	0	0	0	0	0
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	X	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	0	Х	Х	X	Х	Х	Х	0	0
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	X	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	0	Х	Х	Х	Х	Х	Х	Х	Х
\mathcal{L}_{T8} , $\mathcal{L}_{T,9}$	0	0	Х	0	0	Х	Х	Х	Х

Anomalous Triple Gauge Couplings

 $pp \rightarrow ZZ \rightarrow 4I$ CMS-PAS-SMP-16-017 Clean signal: No Zyy, ZZy, ZZZ couplings in the SM at LO Fit to m_{ZZ} distribution to set the limits.

March 2017	CMS				
	ATLAS ATLAS+CMS	Channel	Limits	∫Ldt	ſS
f ^Y .		ZZ (4I,2I2v)	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
' 4		ZZ (4I,2I2v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	H	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	F	ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ (4I,2I2v)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	H (III)	ZZ (4I)	[-1.3e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
	· · · · · · · · · · · · · · · · · · ·	ZZ (41,212v)	[-1.0e-02, 1.0e-02]	9.6 fb ⁻¹	7 TeV
fΖ		ZZ (4I,2I2v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
' 4	—	ZZ (4I,2I2v)	[-3.3e-03, 3.2e-03]	20.3 fb ⁻¹	8 TeV
	⊢−−−− 4	ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	—	ZZ (2l2v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I,2I2v)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	H (ZZ (4I)	[-1.2e-03, 1.1e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2v)	[-8.7e-03, 9.1e-03]	9.6 fb ⁻¹	7 TeV
f ^γ	II	ZZ (4I,2I2v)	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
'5	H	ZZ (4I,2I2v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	H	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢−−−− 4	ZZ(2l2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ(4I,2I2v)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 TeV
	H H	ZZ (4I)	[-1.2e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2v)	[-1.1e-02, 1.1e-02]	9.6 fb ⁻¹	7 TeV
fZ	· · · · · · · · · · · · · · · · · · ·	ZZ (4I,2I2v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
'5	⊢−−−	ZZ (4I,2I2v)	[-3.3e-03, 3.3e-03]	20.3 fb ⁻¹	8 TeV
		ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢ −−−	ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I,2I2v)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 TeV
	H (ZZ (4I)	[-1.0e-03, 1.2e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2v)	[-9.1e-03, 8.9e-03]	9.6 fb ⁻¹	7 TeV
	2 0	0.02	0.04	I	0 06
0.0	2 0	0.02	aTCC Lin	nita @01	50/ CI
			a i GU Lin		5% U.L

Anomalous Triple Gauge Couplings

Semileptonic WV decay (V=W,Z)

- Larger rate than pure leptonic channel
- Leptonic decaying W can be reconstructed by assigning MET to neutrino
- ➤ Consider boosted V→qq, increased sensitivity to new physics

8 TeV limits arXiv:1703.06095

Parameter	Expected Limits	Observed Limits
λ_Z	[-0.014, 0.013]	[-0.011, 0.011]
$\Delta \kappa_{\gamma}$	[-0.068, 0.082]	[-0.044, 0.063]
Δg_1^{Z}	[-0.018, 0.028]	[-0.0087, 0.024]

EFT limits (Translated)

	$c_{\rm WWW}/\Lambda^2$	$c_{\rm B}/\Lambda^2$	$c_{\rm W}/\Lambda^2$
	(TeV ⁻²)	$({\rm TeV}^{-2})$	$({\rm TeV}^{-2})$
*	[-2.7, 2.7]	[-14, 17]	[-2.0, 5.7]
[6]	[-5.7, 5.9]	[-29.2, 23.9]	[-11.4, 5.4]
[7]	[-4.61, 4.60]	[-20.9, 26.3]	[-5.87, 10.54]
[43]	[-4.6, 4.2]	[-260, 210]	[-4.2, 8.0]
[44]	[-3.9, 4.0]	[-320, 210]	[-4.3, 6.8]

13 TeV limits (2015 dataset) CMS-PAS-SMP-16-012

	aTGC	expected limit	observed limit
ц.	$\frac{c_{WWW}}{\Lambda^2}$ (TeV ⁻²)	[-8.73 , 8.70]	[-9.46 , 9.42]
EF	$\frac{\hat{c}_W}{\Lambda^2}$ (TeV ⁻²)	[-11.7 <i>,</i> 11.1]	[-12.6 , 12.0]
ď	$\frac{\hat{c}_B}{\Lambda^2}$ (TeV ⁻²)	[-54.9 <i>,</i> 53.3]	[-56.1 , 55.4]
ex m.	λ	[-0.036 , 0.036]	[-0.039 , 0.039]
ert	Δg_1^Z	[-0.066 , 0.064]	[-0.067 , 0.066]
⊳ď	$\Delta \kappa_Z$	[-0.038 , 0.040]	[-0.040,0.041]

Improvement upon the sensitivity of the fully leptonic 8TeV results and the combined LEP experiments

Anomalous Quartic Gauge Couplings

	Observed limits	Expected limits	Run-I limits
	(TeV ⁻⁴)	(TeV^{-4})	(TeV ⁻⁴)
f_{S0}/Λ	[<i>-</i> 7.7 <i>,</i> 7.7]	[-7.0, 7.2]	[-38 , 40] [11]
f_{S1}/Λ	[-21.6,21.8]	[-19.9,20.2]	[-118 , 120] [11]
f_{M0}/Λ	[-6.0, 5.9]	[-5.6, 5.5]	[-4.6 , 4.6] [29]
f_{M1}/Λ	[-8.7 ,9.1]	[-7.9, 8.5]	[-17 , 17] [29]
f_{M6}/Λ	[-11.9,11.8]	[-11.1,11.0]	[-65 , 63] [11]
f_{M7}/Λ	[-13.3,12.9]	[-12.4,11.8]	[-70 , 66] [11]
f_{T0}/Λ	[-0.62,0.65]	[-0.58,0.61]	[-3.8 , 3.4] [30]
f_{T1}/Λ	[-0.28,0.31]	[-0.26,0.29]	[-1.9 , 2.2] [11]
f_{T2}/Λ	[-0.89,1.02]	[-0.80,0.95]	[-5.2 , 6.4] [11]

Significant improvement since Run-I CMS PAS SMP-17-004

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
f_{T_0}/Λ^4	-0.53	0.51	-0.46	0.44	0.6
f_{T_1}/Λ^4	-0.72	0.71	-0.61	0.61	0.6
f_{T_2}/Λ^4	-1.4	1.4	-1.2	1.2	0.6
f_{T_8}/Λ^4	-0.99	0.99	-0.84	0.84	2.8
f_{T_9}/Λ^4	-2.1	2.1	-1.8	1.8	2.9

CMS PAS SMP-16-019

Experimental constraint better than the theoretical one

 $L_{S,i}$: Operators containing just $D_{\mu}\Phi$ $L_{M,i}$: Operators containing $D_{\mu}\Phi$ and field strength $L_{T,i}$: Operators containing just the field strength tensor

Comparison with existing limits

13 TeV limits significantly better than 8 TeV limits

$L_{M,i}$: Operators containing $D_{\mu}\Phi$ and field strength

CMS EWK ss WW $\rightarrow \ell^+/-\ell^+/-qq$: using 19.4 fb⁻¹ of 8 TeV pp collisions Phys. Rev. Lett. 114, 051801 (2015) CMS $VW\gamma \rightarrow jj\ell\bar{\nu}\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys. Rev. D 90, 032008 (2014) CMS $\gamma\gamma \rightarrow W^+W^- \rightarrow e^+\mu^-$ scattering with 5.0 fb⁻¹ of 7 TeV and 19.7 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP CMS EWK qq $\rightarrow Z\gamma qq \rightarrow \ell^+\ell^-\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-018 CMS EWK qq $\rightarrow W\gamma qq \rightarrow \ell^+\nu\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-011 CMS W $\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ and $Z\gamma\gamma \rightarrow \ell^+\ell^-\gamma\gamma$ triboson production with 19.4 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP

- ATLAS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys.Rev.Lett. 115 (2015) 3, 031802

$L_{T,i}$: Operators containing just the field strength tensor

https://twiki.cern.ch/twiki/bin/view/CMSPu blic/PhysicsResultsSMPaTGC

Outlook

Without hints on new physics, SM precession measurement is becoming more alive.

By LS2, we'll have about 150 fb^{-1} data

- Enable precise measurement of many processes; higher order predictions in QCD maybe also EW can be checked
- Increase sensitivities in probing the nature of EWSB