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event kinematics ATLAS, CMS 2015 125.09 ± 0.24 GeV

Higgs BRs Freitas, JE (PDG 2016) 126.1 ± 1.9 GeV

updated electroweak fit 94+18 −16 GeV

MH
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Electroweak fit: precise inputs
5 inputs needed to fix the bosonic sector of the SM:       
SU(3) × SU(2) × U(1) gauge couplings and 2 Higgs parameters

fine structure constant: α known to ±6.6 × 10−10 from 
Rydberg constant (leaves ge–2 as new physics constraint)

Fermi constant: GF known to ±5.1 × 10−7 from muon lifetime

Z mass: MZ
2 known to ±4.6 × 10−5 from Z-lineshape

Higgs mass: MH
2 known to ±3.8 × 10−3

strong coupling: αs(MZ) extracted to ±1.4% from EW fit 
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Z decays: Γ(Z → hadrons)∕Γ(Z → leptons)

Z height: for hadrons least correlated

Nν = 2.992 ± 0.007

τ lifetime: 

αs at the verge of a perturbative breakdown: FOPT vs. CIPT

combined with Z-pole values gives perfect quantitative QCD test

W width: lacks precision, but 1st + 2nd row CKM unitarity test

Weak probes of the strong coupling
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hadronic vacuum polarization

consistency between experimental                        
B(τ− → ν π0 π−) and prediction from 
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1.9 σ conflict between KLOE and BaBar
10Davier et al. 2011 10
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Charm and bottom quark masses

Yukawa coupling – mass relation:  
Δmb = ± 9 MeV & Δmc = ± 8 MeV to 
match future precision in HiggsBRs

Sum rule:                                        
mc = 1272 ± 8 ± 4 (αs) MeV         
Masjuan, Spiesberger, JE 2016 
(expect about twice the error for mb)
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reduce QCD error to 70 MeV in the future                                           
M. Beneke, P. Marquard, P. Nason, M. Steinhauser 2016

top mass still matters: change from previous                       
mt = 173.34 ± 0.81 GeV reduces indirect MH by 3 GeV
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Figure 6: Prediction for MW as a function of mt. The left plot shows all points allowed by
HiggsBounds, the middle one requires Mh to be in the mass region 125.6 ± 3.1 GeV, while
in the right plot MH is required to be in the mass region 125.6 ± 3.1 GeV. The color coding
is as in Figs. 1 and 4. In addition, the blue points are the parameter points for which the
stops and sbottoms are heavier than 500 GeV and squarks of the first two generations and
the gluino are heavier than 1200 GeV.

sleptons, charginos and neutralinos, as analyzed above.

While so far we have compared the various predictions with the current experimental
results for MW and mt, we now discuss the impact of future improvements of these mea-
surements. For the W boson mass we assume an improvement of a factor three compared
to the present case down to �MW = 5 MeV from future measurements at the LHC and a
prospective Linear Collider (ILC) [118], while for mt we adopt the anticipated ILC accuracy
of �mt = 100 MeV [119]. For illustration we show in Fig. 7 again the left plot of Fig. 4,
assuming the mass of the light CP-even Higgs boson h in the region 125.6 ± 3.1 GeV, but
supplement the gray ellipse indicating the present experimental results for MW and mt with
the future projection indicated by the red ellipse (assuming the same experimental central
values). While currently the experimental results for MW and mt are compatible with the
predictions of both models (with a slight preference for a non-zero SUSY contribution), the
anticipated future accuracies indicated by the red ellipse would clearly provide a high sen-
sitivity for discriminating between the models and for constraining the parameter space of
BSM scenarios.

As a further hypothetical future scenario we assume that a light scalar top quark has
been discovered at the LHC with a mass of m

˜t1 = 400 ± 40 GeV, while no other new
particle has been observed. As before, for this analysis we use an anticipated experimental
precision of �MW = 5 MeV (other uncertainties have been neglected in this analysis).
Concerning the masses of the other SUSY particles, we assume lower limits of 300 GeV
on both sleptons and charginos, 500 GeV on other scalar quarks of the third generation
and of 1200 GeV on the remaining colored particles. We have selected the points from our
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• |gefAV| = ½ − 2 |Qf| sin2θW               |gefVA| = ½ − 2 sin2θW

• f = e ⟹ |geeAV| = ½ − 2 sin2θW ≪ 1

• Δsin2θW = (sin2θW – 1/4 + N/4Z) ΔQW/QW
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• deuterium target (isoscalar and simple nucleus)

• ALR ≡ σL – σR / σL + σR ∝ Q2

• large Q2 ⟹ ALR(d) ~ 10–4

• large y ⟹ geqAV and geqAV

• Qq weighted (γ-Z interference)

23
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calculation Aleksejevs, Barkanova
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• ALR ∝ QW(p) + Q2 B(Q2, θ)

• Qweak (Jefferson Lab): 

• Q2 = 0.025 GeV2

• extrapolation to Q2 = 0

• large γ-Z box Gorchtein,                                                            
Horowitz, Ramsey-Musolf; Rislow, Carlson;                                                     
Hall, Blunden, Melnitchouk, Thomas, Young
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• Q2 = 0.025 GeV2

• extrapolation to Q2 = 0

• large γ-Z box Gorchtein,                                                            
Horowitz, Ramsey-Musolf; Rislow, Carlson;                                            
Hall, Blunden, Melnitchouk, Thomas, Young

• P2 (JGU Mainz): Q2 = 0.0045 GeV2 (ALR ~ 10–8)

• γ-Z box correction (error) factor of 8 (5) smaller
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Figure 3: Partial cesium energy-level diagram including the splitting of the S states
by the magnetic field. The case of 540-nm light exciting the (F = 3,mF = 3) level
is shown. Diode lasers 1 and 2 optically pump all of the atoms into the (3,3) level,
and laser 3 drives the 6SF=4 (Fdet) to 6PF=5 transition to detect the 7S excitation.
PNC is also measured for excitation from the (3,-3), (4,4), and (4,-4) 6S levels.
The diode lasers excite different transitions for the latter two cases.

Then even more work must be invested to verify that the detected effect is truly
a violation of parity and not a spurious signal arising from systematic errors such
as imperfect reversals or alignments of the fields that define the handedness of the
experiment.

In the absence of electric fields or parity violating interactions, the electric dipole
(E1) transition between the 6S and 7S states of the cesium atom (Fig. 3) is
forbidden. As the nuclear spin of 133Cs is I = 7/2, these S1/2 levels combine with
the nuclear ground state to form hyperfine states of total angular momentum F =
4 and 3. A PNC interaction mixes a small amount (∼ 10−11) of the neighboring
6P3/2 and 7P3/2 states into the 6S and 7S states: the P3/2 hyperfine levels have
F = 2-5, so that PNC mixing with both the F = 3 and 4 hyperfine S states

Atomic parity violation



• geqAV (coherent) Stark induced-
Z interference amplitude 
dominant (spin-independent)
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• QW(133Cs) ~ 0.6% (incl. 
theory) C.S. Wood et al. 1997

27

Anapole Moments 11

9.19 GHz

2.18 GHz

Dye Laser
(540 nm)

6S1/2

7S1/2

F=4

F=4

F=3

F=3

6P3/2
F=5
4
3
2

Pr
ob
e L
as
er

Hy
pe
rfi
ne
Pu
mp
La
ser

Ze
em
an
Pu
mp
La
ser

m=+4

m=-4
m=-3

m=+3

m=+4

m=-4

m=-3

m=+3

}
}

Figure 3: Partial cesium energy-level diagram including the splitting of the S states
by the magnetic field. The case of 540-nm light exciting the (F = 3,mF = 3) level
is shown. Diode lasers 1 and 2 optically pump all of the atoms into the (3,3) level,
and laser 3 drives the 6SF=4 (Fdet) to 6PF=5 transition to detect the 7S excitation.
PNC is also measured for excitation from the (3,-3), (4,4), and (4,-4) 6S levels.
The diode lasers excite different transitions for the latter two cases.

Then even more work must be invested to verify that the detected effect is truly
a violation of parity and not a spurious signal arising from systematic errors such
as imperfect reversals or alignments of the fields that define the handedness of the
experiment.

In the absence of electric fields or parity violating interactions, the electric dipole
(E1) transition between the 6S and 7S states of the cesium atom (Fig. 3) is
forbidden. As the nuclear spin of 133Cs is I = 7/2, these S1/2 levels combine with
the nuclear ground state to form hyperfine states of total angular momentum F =
4 and 3. A PNC interaction mixes a small amount (∼ 10−11) of the neighboring
6P3/2 and 7P3/2 states into the 6S and 7S states: the P3/2 hyperfine levels have
F = 2-5, so that PNC mixing with both the F = 3 and 4 hyperfine S states

Atomic parity violation



• geqAV (coherent) Stark induced-
Z interference amplitude 
dominant (spin-independent)

• QW(133Cs) ~ 0.6% (incl. 
theory) C.S. Wood et al. 1997

• spin-dependent nuclear 
anapole moment through 
difference in hyperfine 
transitions

27

Anapole Moments 11

9.19 GHz

2.18 GHz

Dye Laser
(540 nm)

6S1/2

7S1/2

F=4

F=4

F=3

F=3

6P3/2
F=5
4
3
2

Pr
ob
e L
as
er

Hy
pe
rfi
ne
Pu
mp
La
ser

Ze
em
an
Pu
mp
La
ser

m=+4

m=-4
m=-3

m=+3

m=+4

m=-4

m=-3

m=+3

}
}

Figure 3: Partial cesium energy-level diagram including the splitting of the S states
by the magnetic field. The case of 540-nm light exciting the (F = 3,mF = 3) level
is shown. Diode lasers 1 and 2 optically pump all of the atoms into the (3,3) level,
and laser 3 drives the 6SF=4 (Fdet) to 6PF=5 transition to detect the 7S excitation.
PNC is also measured for excitation from the (3,-3), (4,4), and (4,-4) 6S levels.
The diode lasers excite different transitions for the latter two cases.

Then even more work must be invested to verify that the detected effect is truly
a violation of parity and not a spurious signal arising from systematic errors such
as imperfect reversals or alignments of the fields that define the handedness of the
experiment.

In the absence of electric fields or parity violating interactions, the electric dipole
(E1) transition between the 6S and 7S states of the cesium atom (Fig. 3) is
forbidden. As the nuclear spin of 133Cs is I = 7/2, these S1/2 levels combine with
the nuclear ground state to form hyperfine states of total angular momentum F =
4 and 3. A PNC interaction mixes a small amount (∼ 10−11) of the neighboring
6P3/2 and 7P3/2 states into the 6S and 7S states: the P3/2 hyperfine levels have
F = 2-5, so that PNC mixing with both the F = 3 and 4 hyperfine S states

Atomic parity violation



Oblique physics beyond the SM

STU describe corrections to gauge-boson self-energies

T breaks custodial SO(4)

a multiplet of heavy degenerate chiral fermions contributes       
ΔS = NC∕3π ∑i [t3Li − t3Ri]2

extra degenerate fermion family yields ΔS = 2∕3π ≈ 0.21

S and T (U) correspond to dimension 6 (8) operators
2828
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Δρ0 = GF Σi Ci / (8 √2 π2) Δmi
2                            [ Δmi

2 ≥ (m1 – m2)
2 ]

despite appearance there is decoupling                                              
(see-saw type suppression of Δmi

2)

Moriond 2017 update:                                                                              
ρ0 = 1.00036 ± 0.00019 (1.9 σ) ⟹ Σi Ci /3 Δmi

2 ≤ (46 GeV)2 @95%CL  

LHC@150 fb–1: 

no SM deviation: ρ0 = 1 ± 0.00014 ⟹ Σi Ci / 3 Δmi
2 ≤ (27 GeV)2

assuming no change in central value:                                                         
ρ0 = 1.00036 ± 0.00014 ⟹ Σi Ci / 3 Δmi

2 = (34+6
–7 GeV)2
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BACKUP



STU

current FCC-ee

S ± 0.099 ± 0.005

T ± 0.116 ± 0.007

U ± 0.095 ± 0.005

S ± 0.078 ± 0.003

T ± 0.066 ± 0.003

T ± 0.030 ± 0.002
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MZ       ± 2.1 MeV  ➨ < 100 keV

ΓZ        ± 2.3 MeV  ➨ < 100 keV

Rμ           ± 0.025  ➨ < 0.001

Rb           ± 0.00066  ➨ < 6×10
–5

mt        ± 810 MeV  (incl. QCD) ➨ ± 15 MeV

σhad       ± 37 pb ➨ ± 4 pb (assumes 0.01% luminosity error)

ALR        ± 0.0022 ➨ ± 2×10
–5

 (needs 3-loop EW to be useful, 4-loop to match exp.)

ALR

FB
(b) ± 0.020 ➨ ± 0.001 (using similar b-tagging improvements as for Rb)

MW      ± 33 MeV  (LEP); ± 16 MeV  (Tevatron) ➨ ± 0.6 MeV

ΓW       ± 42 MeV  ➨ 1st + 2nd row CKM unitarity test

FCC-ee


