

Recent results from the ANTARES High Energy Neutrino Telescope. KM3NeT-ARCA status report.

Antonio Capone, University "La Sapienza" and I.N.F.N. Roma, Italy at the

26th International Workshop on Weak Interactions and Neutrinos (WIN2017)

University of California, Irvine

Talk outline

- ANTARES: the 1st undersea Cherenkov detector for High Energy Astrophysical neutrino detection
- The ANTARES main physics goal: search for astrophysical neutrinos
 - Search for a diffuse flux
 - Search for point-like sources
 - Search for "enhanced" diffuse flux
- Indirect search for Dark Matter
 - from the SUN, the Galactic Plane, the Earth
- Transient/multi-messenger studies
- Perspectives for the future
- Conclusions & Summary

Cherenkov v Telescope: Detection principle

Search for neutrino induced events, mainly $v_{\mu} N \rightarrow \mu X$, deep underwater

p, nuclei Neutrinos from cosmic sources

Down-going μ from atm. showers S/N ~ 10⁻⁶ at 3500m w.e. depth

induce 1-100 muon evts/y in a km³ Neutrino Telescope - Atmospheric neutrino flux ~ E_v^{-3}

- Neutrino flux from cosmic sources ~ E_v^{-2}

- Search for neutrinos with E_v>1÷10 TeV
- ~TeV muons propagate in water for several km before being stopped

 \bullet go deep to reduce down-going atmospheric μ backg.

long μ tracks allow good angular reconstruction

For $E_v \ge 1 TeV \quad \theta_{\mu\nu} \sim \frac{0.7}{\sqrt{E_v[TeV]}}$

Up-going μ from neutrinos generated in atm. showers S/N ~ 10⁻⁴

p, nuclei

The ANTARES search for point-like v sources based on two kind of events

• Tracks: CC ν_{μ} or $\nu_{\tau} \rightarrow \mu$

- Interaction can occur far from the detector providing a large *Effective Volume*
- Angular resol. $< 0.4^{\circ}$ for $E_{\nu} > 10 TeV$
- Energy resol. ~ factor 3

• Electronic or hadronic showers: NC and CC v_e or $v_{\tau} \rightarrow$ showers

- Events contained in the detector: smaller *Effective Volume,*
 - Energy resolution ~ 5-10%
 - Median angular resolution ~ 3°

ANTARES physic's goals Search for point-like cosmic Neutrino Sources

Weak Interactions and Neutrinos (WIN2017)

University of California, Irvine, USA

ANTARES Search for point-like cosmic v Sources

9 years of ANTARES data searching for all neutrino flavours: 7629 "tracks" + 180 "shower" events passed the selection criteria

so far no significant excess has been found

ANTARES results: "full sky search" of v sources

The visible sky of ANTARES divided on a $1^0 \times 1^0$ (r.a x decl.) boxes. Maximum Likelihood analysis searching for clusters

The most significant cluster: decl. $\delta = 23.5^{\circ}$, r.a. $\alpha = 343.8^{\circ}$ has a pre-trial p-value of 3.84×10^{-6}

 \rightarrow U. L. from this sky location $E^2 \frac{d\Phi}{dE} = 3.8 \times 10^{-8}$ GeV cm⁻² s⁻¹

21/06/2017

ANTARES results: "full sky search" of v sources

Joint IceCube + ANTARES search for v sources

Skymap of pre-trial p-values for the combined ANTARES 2007/12 and IceCube 40, 59, 79 point-source analyses.

ANTARES Search for Diffuse flux of Cosmic Neutrinos

- Neutrinos from:
 - Unresolved AGN
 - "Z-bursts"
 - "GZK like" proton-CMB interactions
- Top-Down models Neutrinos

Their identification out of the more intense background of atmospheric neutrinos (and μ) is possible at very high energies (E_{μ} >> TeV) and requires good energy reconstruction.

Found 8 "shower events" for $10 \text{ TeV} < E_{SH} < 100 \text{ TeV}$ when 5 expected. Compatible with IceCube signal

number of events

Latest ANTARES results on the search for diffuse v flux

Tracks

Data: 2007-2015 (2451 live-days) Above E_{cut} : Bkg: 13.5 ± 3 evts, IC-like signal: 3 evts

Observed: 19 evts

Cascades

Data: 2007-2013 (1405 live-days) Above E_{cut} : Bkg: 5 ± 2 evts, IC-like signal: 1.5 evts

Observed: 7 evts

Search for neutrinos from the Galactic ridge - 1

 v's and γ-rays produced by CR propagation

> $p_{CR} + p_{ISM} \rightarrow \pi^0 \pi^{\pm} \dots$ $\pi^0 \rightarrow \gamma \gamma (EM \ cascade)$

 $\pi^{\pm} \rightarrow \nu_{\mu}, \nu_{e} \dots$

- Search for v_{μ} , data 2007-2013
- Search region |I|<30°, |b|<4°
- Cuts optimized for neutrino energy spectrum ~E^{-γ} (γ=2.4-2.5)
- Counts in the signal/off zones
- No excess in the HE neutrinos
- 90% C.L. upper limits: 3<E_v<300 TeV

Distribution of the reconstructed E_{μ} of up-going muons in the Galactic Plane (black crosses) and average of the off-zone regions (red histogram).

Physics Letters B 760 (2016) 143–148

Search for neutrinos from the Galactic plane - 2 New analysis on tracks and showers, based on Max. Lik.

KRA, new model to describe the C.R. transport in our galaxy. It agrees with C.R. measurements (KASCADE, Pamela, AMS, Fermi-LAT, HESS). **FERMI-LAT** diffuse γ flux from along the galactic plane $(\pi^0 \rightarrow \gamma \gamma)$ well explained above few GeV.

KRA, allows to predict the v flux by π^{\pm} decays induced by galactic CR interactions

 \mathbf{KRA}_{γ} 50PeV cut-off for CR **KRA**, 5PeV cut-off for CR

KRA_y assuming a neutrino flux \propto E^{-2.5} and a CR spectrum with 50 PeV cut-off can explain ~20% of the IceCube observed HESE. ANTARES, with an good visibility of the Galactic Plane well suited to observe these fluxes or to put competitive limits: no signal found \rightarrow set 90%C.L. upper limits. **Antonio Capone**

15

... not only neutrino astrophysics...

... also open problems in particle physics ...

– Dark Matter searches:

- Neutralino annihilation in Sun, Earth, Galactic Center
- Magnetic Monopoles
- Particle acceleration mechanisms
- Multi-messenger searches
- Neutrino Oscillations
- Search for Sterile Neutrinos

Indirect search for Dark Matter in the Sun

No excess observed over the expected background: evaluate 90% C.L. upper limits for expected signal

21/06/2017

Indirect search for Dark Matter in the Galactic Centre

9 years of ANTARES data: 2007-2015 - ANTARES "observes" the G.C > 66% time Search performed for:

- 50 GeV/ $c^2 < M_{WIMP} < 100 \text{ TeV}/c^2$
- $WIMP + WIMP \rightarrow b\overline{b}, W^+W^-, \tau^+\tau^-, \mu^+\mu^-, \nu\overline{\nu}$

The expected v flux depends on the DM distribution around the GC. 3 halo models have been considered

Parameter	NFW	Burkert	McMillan
r _s [kpc]	$16.1^{+17.0}_{-7.8}$	$9.26^{+5.6}_{-4.2}$	17.6 ± 7.5
ρ_{local} [GeV/cm ³]	$0.471\substack{+0.048\\-0.061}$	$0.487\substack{+0.075\\-0.088}$	0.390 ± 0.034

Distribution of measured angles between reconstructed tracks and the Galactic Centre (crosses). The red line describes what is expected from background event.

The integrated J-Factor, J_{int} , for a cone-shaped region centred on the G.C. with an opening angle Ψ

21/06/2017

Indirect search for Dark Matter in the Galactic Centre

Indirect search for Dark Matter in the Earth

- WIMPS can be gravitationally bound to the Earth if $v_{WIMP} < v_{escape}^{Earth}$
- $v_{escape}^{Earth} \sim 14 \frac{km}{s}$; $v_{WIMP} = \overline{v}_{270}$ following a Maxwell-Boltzmann distr. with r.m.s. velocity 270 km/s \rightarrow only a small fraction of WIMPS captured on the Earth.
- WIMPS-nucleons collision described by spin-independent cross section σ_p^{SI}
- Fe and Ni most abundant in the Earth \rightarrow effective capture for $M_{WIMP} \sim 50 \ GeV$
- In the Earth the capture $(\Gamma_{c}(t))$ and annihilation $(\Gamma_{A}(t))$ rates would reach the equilibrium in $\tau \sim 10^{11}$ y >> Earth age $(t_{Earth} = 4.5 \ 10^{9} \text{ y})$
- In these conditions:

Indirect search for Dark Matter in the Earth 6 years of ANTARES data: 2007-2012 25 GeV/c² < M_{WIMP} < 1 TeV/c² WIMP + WIMP $\rightarrow b\overline{b}, W^+W^-, \tau^+\tau^-, \nu\overline{\nu}$

No excess found over the expected background Limits on the WIMP-WIMP annihilation rate in the Earth Limits on the spin independent WIMP-nucleon cross-section

ANTARES Multi-messenger program

- A "common observation" of the same source will allow to better understand the "acceleration mechanisms", the physics inside the source
- A "common observation will increase the detector sensitivities

A long list of activities:

Real-time (follow-up of the selected neutrino events):

- optical telescopes [TAROT, ROTSE, ZADKO, MASTER
- X-ray telescope [Swift/XRT]
- GeV-TeV γ-ray telescopes [HESS, HAWC]
- radio telescope [MWA]
- Online search of fast transient sources [GCN, Parkes]
 <u>Multi-messenger correlation with:</u>
- Gravitational wave [Virgo/Ligo]
- UHE events [Auger]

Time-dependent searches:

- **GRB** [Swift, Fermi, IPN]
- Micro-quasar and X-ray binaries [Fermi/LAT, Swift, RXTE]
- Gamma-ray binaries [Fermi/LAT, IACT]
- Blazars [Fermi/LAT, IACT, TANAMI...]
- Crab [Fermi/LAT]
- Supernovae lb,c [Optical telescopes]
- Fast radio burst [radio telescopes]

ANTARES Multi-Messenger program: search for v from GRB

ANTARES Multi-messenger program: some example Search for v from GRB sources 2007-2011 data: Astronomy & Astrophysics 559, A9 (2013) alerts and data for FERMI – SWIFT - GCN analysis of 296 Big GRBs (total prompt emission 6.6 hours) Simulation of neutrino fluxes from GRB: NeuCosmA (Hümmer et al 2010) \rightarrow expected 0.061 events Overthe (Guetto, et al. 2004) \rightarrow expected 0.48 events Expected bookstone ound 0.051 events No events found in stacked GRB search within 10° window: 10⁻⁶ SL 10² (D

ANTARES Multi-messenger program: search for v_{μ} from very bright GRB sources

The search was performed for 4 bright GRBs:

GRB080916C, GRB 110918A, GRB 130427A and GRB 130505A) observed between 2008 and 2013.

The expected neutrino fluxes evaluated in the framework of:

- the fireball model have with the internal shock scenario $(E_{\nu} \ge 100 Te^{1})$
- the photospheric scenario ($E_{\nu} < 10 TeV$)

No events have been found: 90% C.L. upper limits to the neutrino fluence.

ANTARES Multi-messenger program v follow-up of GW sources - 1

3 alerts sent by LIGO during the run 01 (2015/09 \rightarrow 2016/01):

GW150914: merging of 2 BHs (M= 36/29 M_s - 410 Mpc - 5.1 σ)
 LVT151012: merging of 2 BHs (M= 23/13 M_s - 1000 Mpc - 1.7 σ)
 GW151226: merging of 2 BHs (M= 14/7 M_s - 440 Mpc - >5 σ)

A joint ANTARES/IceCube/LigoSC/Virgo analysis performed as "Neutrino follow-up" of GW150914

Phys.Rev. D93 (2016), 122010

- No ANTARES events in ± 500 s from the GW time (0.015 expected)
- Limits from ANTARES dominates for $E_V < 100 \text{ TeV}$
- U.L. from IC dominated above 100 TeV
- Size of GW150914 : 590 deg² ANTARES resolution: <0.5 deg²
- Limits on total energy radiated in neutrinos: <10% GW
- Future: Receive / send alerts in real time

ANTARES Multi-messenger program

v associated with GeV and TeV γ -ray flaring blazars and X-ray binaries

- Search for v's (2008-2012) correlated with high activity state
- Blazars monitored by FERMI-LAT and IACTs (JCAP 1512 (2015), 014)
- 33 X-ray binaries during flares observed by Swift-BAT, RXTE-ASM and MAXI. Transition states from telegram alerts
- No significant excess (best post-trial 72% for GX 1+4), then → Upper limits on v fluence and model parameters constrain

The future of Neutrino Astronomy in the Mediterranean Sea ANTARES → KM3NeT

12 Lines, 885 OM

3 Building Blocks on 2 Sites 3*115 lines, ~6210 OMs, ~ 192510 PMTs

Basic active element: Digital Optical Module 31 x 3" PMTs

18 OMs/line

21/06/2017

21/06/2017

Weak Interactions and Neutrinos (WIN2017) - University of Californ

University of California, Irvine, USA - Antonio Capone

34

KM3NeT Neutrino Telescope science scopes

Medium Energy

Low Energy MeV < E_v < 100 GeV

- $MeV < E_{v} < 100 GeV \qquad MeV < E_{v} < 100 GeV$ - Neutrino Oscillations - Dark Matter search
- Neut. Mass Hierarchy
- Sterile neutrinos
- Neut. From Supernovae

KM3NeT-ORCA

ANTARES

- Monopoles

- Nuclearites

- Neutrinos from extraterrestrial sources

High Energy

E_v > 1 TeV

- Origin and production mechanism of HE CR

KM3NeT-ARCA

... and synergies with Sea-Sciences: oceanography, biology, seismology, ...

KM3NeT Building Blocks

	ARCA	ORCA
Location	Italy – Capo Passero	France - Toulon
Detector Lines distance	90m	20m
DOM spacing	36m	9m
Instrumented mass	500Mton	5,7 Mton

KM3NeT phased implementation

Phase	Building Blocks		Number of DUs		Phisics Goals		Status	
	ARCA	ORCA	ARCA	ORCA	ARCA	ORCA	ARCA	ORCA
1	0.2	0.06	24	7	Proof of feasibility and first science results. Joined analysis with ANTARES.		Fully funded. First 2 DUs acquiring data in Capo Passero.	
2.0	2	1	230	115	Study of the IceCube signal.	Determination of neutrino mass hyerarchy.	Not yet funded.	Not yet funded.
3	6	1	690	115	All flavour neutrino astronomy.			

L.O.I. KM3NeT ARCA and ORCA • J. Phys. G43 (2016) n. 8, 084001 • arXiv: 1601.07459

The future of Neutrino Astronomy in the Mediterranean Sea

KM3NeT-ARCA

ARCA detector

- ARCA: 2 blocks
- 115 strings/block
- 90m horizontal spacing
- 18 Optical Modules/strings
- 36m vertical spacing

Summary

- ANTARES studied the **Southern sky** with v_{μ} competitive sensitivities and excellent angular resolution for both *tracks* and *cascades*;
 - > Upper limits on known GeV-TeV γ -ray sources <10⁻⁸ GeV/(cm² s)
 - > Sensitivity for a diffuse flux close to the level of the IC signal
- Detailed study of extended regions (Galactic plane, Fermi Bubbles)
 - > no v_{μ} excess from the Galactic ridge/IC hot spot;
- A large multi-messenger effort
 - > EM radiation: radio (MWA), optical, X-ray, γ-rays (LAT, IACTs)
 - > Gravitational Wave observatories and IceCube
- ANTARES contribute to the indirect searches for Dark Matter
 - > Most competitive limits for spin-dependent cross-section
 - > Competitive $\langle \sigma v \rangle$ limits from the Galactic centre

• **KM3NeT-Arca** Neutrino Telescope under construction will soon be able to observe the neutrino sky with unprecedented sensitivities.