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What is MINER?

 Dedicated neutrino-nucleus cross-section experiment running 
at Fermilab in the NuMI beamline.

Has performed detailed 
study of  neutrino 
interactions on a 
variety of nuclei. 
Using Low Energy 
Neutrinos 

Visualized with a 
fully active, high 
resolution detector 
and large statistics

120 modules of tracker, targets, and calorimetry
(Total Mass: ~ 200 tons)

208 active planes × 127 scintillator bars
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Detector Capabilities 

 Good tracking resolution (~3 mm)

 Calorimetry for both charged hadronic particles and EM showers
MINERA detector's hadronic energy response was measured using a dedicated 
test beam experiment at the Fermilab Test Beam Facility (FTFB)

 Timing information (few ns resolution) - untangle multiple  interactions in same 
spill, decays

 Containment of events from neutrinos up to several GeV (except muon)

 Muon energy and charge measurement from MINOS

 Particle ID from dE/dx and energy+range 
But no charge determination except muons entering MINOS

 or 
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Why is MINERA Needed?

 Existing data between 1-20 GeV 
limited:
 Mainly bubble chamber data
 Wide band neutrino beams

Low statistics samples
Large uncertainty on flux.
Limited target types

Rev. Mod. Phys. 84, 1307–1341 (2012)
(includes MiniBooNE results)


μ


μ

“   “

“   “
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Why do we care that the 
cross-sections are poorly known?

 oscillations:
→ We are now in a period of precision neutrino oscillation measurements

→ Note oscillation probability depends on E


  - However Experiments Measure E
v i s

  - E
v i s

 depends on Flux, , detector response, interaction 

    multiplicities, target type, particle type produced...
                   →  E

v i s
 not equal to E



→ Appearance Oscillation Measurements: 
     - Large

13
 and CP violation - systematics important

     - Need to understand backgrounds to ν
e 
searches:

      
 Need Precision understanding of Low energy (Few GeV) 

μ,e
 &  

μ,e
 cross sections to 

improve models.
            

MINER Energy Range

(

 disappearance 

example)

“    “
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Why do we care that the 
cross-sections are poorly known?

 We are now in a period of precision 
neutrino oscillation measurements

Can't ignore systematics 
uncertainties

Systematic errors due to neutrino 
interaction cross sections are a large 
fraction of the error

 Need better models (generators) based 
on high precision data 

→  Enter MINERA
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Data Collected and
Expected Sample Sizes

Beam Power:
LE ≈ 250kW.

Beam Power:
ME ≈ 650kW.

Both ME and LE running :
→ LE  > 3.98x1020 POT
→ ME > 1.22x1021 POT

LE data taking completed in 2012 ( and )
Since 2013 running in ME mode, 20/02/17 started 
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Flux: Absolute Cross-section Errors

 Statistical errors are expected to be small. 

 The total error on absolute cross section measurements 
will be dominated by the systematic error on the determination 
of the neutrino flux:

Example: Coherent 
π± production.
PRL 113, 261802 (2014)
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Flux: Our  Beam (NUMI)

MINERA

Hadro
Prod.

→ Magnetic horns focus pions and kaons, which then decay into muons and neutrinos

→ Good measurements of the production of pions and kaons are critical inputs to a 
precise flux prediction 

(Allows easy 
 energy tuning:
LEME)

(Future addition of 4th Muon 
Monitor to study tail of ME beam)



WIN2017: June 20, 2017 11

New flux Prediction Incorporating 
Existing Hadron Production Data

We expect ~5% errors for the ME
with the addition of constraints 
from in situ measurements

LE Beam Configuration

 Update to NuMI beamline simulation

Includes:
Focusing uncertainties
Hadronic interactions
Beamline absorption

And used the following hadro-production data to 
constrain the simulation:

Thin target pion production (NA49)
NuMI target pion production (MIPP)
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Additional Flux Constraints:  
 – e Elastic Scattering and Low-

~100 events in LE sample  ~6% flux constraint 
(in situ measurement – confirms previous 
hadro-production flux constraint)

Park et al., PRD93 (2016) 112007
L. Ren et al., PRD95 (2017) 072009

● – low hadronic recoil energy
● A, B, and C depend on integrals 
over structure functions

● Gives a measurement of the
flux shape

Flux is normalized to extracted inclusive cross section from 
external measurements at high neutrino energy
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() CC Quasi-Elastic 
Scattering (CCQE):

 Used as the “Standard Candle” disappearance signal channel in many oscillations 
experiments: 

Assumed to be a “clean” experimental signature

Hit Energy in 
MeV

Module # → 
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 ν
μ 
& 


CCQE: Comparison to 

Models
CCQE

μ
 CCQE

μ
 

NuWro: Golal, Jusczak, Sobczyk 
arXiv:1202.4197

MA = 1.35: Fit to MiniBooNE data
TEM(dotted): Transverse Enhancement Model 
     → Empirical model based on electron scattering data
GENIE:  Independent nucleons in mean field
SF: More realistic nucleon momentum-energy relation

Both results prefer models with interactions involving multi-nucleon 
clusters  → More later
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ν
μ 
& 


CCQE: In 2D! 

Note excess at ~0.5 GeV P
T 
: 

The effect maps back to excess regions 
in the inclusive NEUTRINO analysis: 
→ Genie is modified to force agreement 
with inclusive result and then compared with CCQE
→ Works for BOTH  and CCQE!

: :
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CC  Cross Section Ratios: A-dependence

 Neutrino Oscillation experiments need a unbiased measurement of the true neutrino energy:

Different Experiments use Different Heavy Nuclear Targets (need mass!):

Carbon, Iron, Lead, Water, Argon, etc.

Nuclear effects are not small in neutrino scattering:

E
Visible

 ≠  E
True

 and Interaction Rate

Neutrino interaction models do not simulate these effects well

More data is needed to improve models

Close-up of
MINERA
Target Region
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CC  DIS Inclusive: 
MINOS matched Muon 

Pb
Fe

 Event selection:
Muon must be matched in MINOS Near Detector
Vertex in passive nuclear target

(Example
from data)

(Muon momentum and charge from MINOS ND + Sum of visible 
energy, weighted by amount of passive material)

(Requiring a MINOS 
match somewhat 
reduces our energy
coverage – If sign of
muon not critical can 
use range and extend

our coverage)   

 Muon angle needed for other kinematic variables:



Module #

DIS sample: Q2 > 1.0 GeV2 and W > 2.0 GeV
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CC DIS Inclusive: 
Divide C, Fe, Pb cross sections by scintillator (CH) cross section

Each nucleus divided by a statistically independent scintillator measurements
Scintillator measurement is specific for each target type: use the 
same transverse area

The ratio of cross sections reduces errors by factor of  2 (~5%):

C/CH

Fe/CH Pb/CH

● Deficit at low x in Pb indicates additional nuclear shadowing than presently in models 
(Genie 2.6.2) needed

● As function of E

(@LE): No tension between MINERA data and GENIE simulations

Mousseau et al., PRD93 (2016) 071101
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Can't Ignore the Nuclear Muck...

 interactions occur INSIDE the nucleus:

Produced particles have to exit out out of 
the nucleus to be observed

Final state interactions (FSI)

There are possible short range 
correlations and medium range 
correlations:

Scattering off a pair of correlated
nucleons – 2p2h effect
AND...

 Long range correlations – RPA effect
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Nuclear effects in neutrino-carbon 
Interactions at low three-momentum transfer

 The observed hadronic energy in charged-current ν

 interactions is combined with 

muon kinematics to permit separation of the quasi-elastic and ∆(1232) resonance 
processes:

 

 We observe a small cross section at very low energy transfer that matches the 
expected screening effect of long-range nucleon correlations.

 Additions to the event rate in the kinematic region between the quasi-elastic and ∆ 
resonance processes are needed to describe the data. 
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 Data in the (q

0
 – q

3
) Plane

 Adding in models RPA (a charge screening nuclear effect) and
2p2h processes improves agreement in some regions, but not all...

 Note: Excess in similar kinematic region to excess in anti-neutrino CCQE

(Phys. Rev. C 83, (2011), Phys. Rev. C 70, 055503 (2004), Phys. Rev. D 88, 113007 (2013) (Valencia Model))
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Now Add Re-weighted 
2p2h Contribution

(Fit a 2D Gaussian in true (q
0
, q

3
) as a re-weighting function)

Nice Agreement!

(Does not effect
true QE or 
resonant production)

#
 o

f 
E

ve
n

ts



WIN2017: June 20, 2017 23

Data to Model Comparisons

 Current and future accelerator-based experiments requires 
accurate prediction of the neutrino energy spectrum. 

 Poorly modeled nuclear effects for the QE and ∆ processes, or 
absence of an entire process such as interactions with correlated 
nucleon pairs will result in an inaccurate mapping E

vis
 → E


. 

 These data from the MINERvA experiment exhibit a process with 
multiple protons in the final state, such as those predicted by 
scattering from two particles leaving two holes (2p2h), with energy 
transfer between the QE and ∆ reactions (Valencia Model).

Also, the cross section at low energy transfer is small: 

Consistent with the effects of long range nucleon-nucleon 
correlations, such as those computed using the Random 
Phase Approximation (RPA) technique. 
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Conclusions
 MINERA will and has precisely studied neutrino interactions in the 1-

20 GeV region:
Using a fine-grained, high-resolution, detector
Using the high flux NuMI beam in multiple energy configurations.

 MINERA is improving our knowledge (and models) of:


CC
 Interactions

Neutrino cross sections at low energy, low Q2.
A-Dependence in neutrino interactions (Targets He, C, Fe, Pb and 
H

2
O)

 These results will help resolve longstanding discrepancies between 
experiments and will be important for minimizing systematic errors in 
oscillation experiments.

 More results are forthcoming (ME Results)!
Increased kinematic coverage (W and Q2)
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http://arxiv.org/abs/1512.07699
http://arxiv.org/abs/arXiv:1601.06313
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http://arxiv.org/abs/1509.05729
http://arxiv.org/abs/1503.02107
http://arxiv.org/abs/1409.4497
http://arxiv.org/abs/arXiv:1501.06431
http://arxiv.org/abs/1409.3835
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Back-ups
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/ Cross Sections Ratio

Minerva has performed the first precise measurement of the
antineutrino cross sections E

nu
<4 GeV.

L. Ren et al., PRD95 (2017) 072009
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Neutrino Oscillation Studies 
and Pion Production: 

 Pion backgrounds to ν
e 
oscillation

 
searches:

      - CC 

 events with 0 and ''lost'' 

      - NC π0:  ν
μ/e

 + N → ν
μ/e 

+ N + π0

      - Stopping charged 's

 Hadrons can interact with nucleons before exiting the nucleus: 
Final State Interactions (FSI)

 Need a good and reliable prediction of pion spectra exiting the 
nucleus.

● π+ spectrum is affected by FSI
● FSI reduces the cross section due to 

pion absorption 
● Cross section is over-predicted by GENIE
● Shapes agree with GENIE

νμ CC π± 

(Phys. Rev. D 92, 092008 (2015))
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Pion Production: Neutral Pions
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Shadowing
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e
 CCQE

~325 MeV proton

~3.5 GeV electron

Beam direction

● NuMI beam contains ~1% 
e
's

● Signal: νe appearance experiments (T2K,   
NOvA, DUNE)
● Not well measured at these energies

●Ratio is 
consistent 
with 1.0

●Shape is not 
significant 
due to 
correlated 
uncertainties
(EM Energy 

Scale) 



/

e

hep-ex: arXiv:1509.05729
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ν
μ 
& 


CCQE: Results 

● These new results use our updated flux prediction 
and supersede our previous published results:

Phys. Rev. Lett. 111, 022501 (2013)
Phys. Rev. Lett. 111, 022502 (2013)
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