Flavor and Precision Physics Experiments Overview

Satoshi MIHARA KEK-IPNS/J-PARC Center/Sokendai

WIN2017, 18-24 June 2017 UC Irvine

Contents

- \cdot Introduction
- Flavor and precision physics with muons
- · Flavor physics with other particles
- · Summary

Flavor Physics

- Precise measurement of flavor structure
- Establishment of SM
 - Indication of BSM?

٠

6

muon g-2, proton radius, B leptonic decay …

Flavor Physics with Muons

More Muons!

- Muons are produced from pion decays
- More muons produced in more pion decays
- Pion production yield depends on the power the proton driver
 - High-Power machine rather than High-Energy machine
 - Proton current

sity for Advanced Stadies

DC or Pulse?

- DC beam for coincidence experiments
 - utilize the lifetime difference between pions and muons
 - $\mu \rightarrow e \gamma$, $\mu \rightarrow e e e$

- Pulse beam for non-coincidence experiments
 - Optimize the proton beam pulse structure

y for Advanced Stadies

μ-e conversion

sity for Advanced Stadies

PSI Cyclotron (DC Muon)

• 2.2mA at 590 MeV:

1.3MW beam power

MEG & MEG II

Graduate University for Advanced Stadies

MEG@PSI

- Search for $\mu^+ \rightarrow e^+ \gamma$ using 3×10^7 Hz muon beam
- · Liquid Xe photon detector & COBRA positron spectrome...
- · DAQ in 2008-2013
- . Final upper limit result published: 4.2×10^{-13} @ 90% C.L.
- · European Physical Journal C, 76(8), 1-30

Detector upgrade to achieve 10 times better sensitivity : MEG II

MEG Muon Statistics

.i-PARC

MEG II

- Improve resolutions by about factor 2 everywhere
 - μ beam rate of 7x10⁷ Hz
 to reach the sensitivity
 of 4x10⁻¹⁴

• Engineering run in 2016

$\mu \rightarrow eee$ Search using DC Muon Beam

- Another channel sensitive to cLFV with DC muon beam
 - 1.0x10⁻¹² (90% C.L.) by SINDRUM
 - Goal : 10⁻¹⁶ in 3 steps
- Measure all electron tracks precisely
- most severe BG
 - $\mu^+ \rightarrow e^+ e^+ e^- \overline{\nu} \nu$

for Advanced Studies

Detector Technology

- - High granularity (occupancy)
 - Close to target (vertex resolution)
 - 3D space points (reconstruction)
 - Minimum material (momenta below 53 MeV/c)
 - Gas detectors do not work (space charge, aging, 3D)
 - Silicon strips do not work (material budget, 3D)

University for Advanced Stadies

Hybrid pixels (as in LHC) do not work (material budget)

Detector Building

• $50 \mu m$ silicon

• $25 \mu m$ KaptonTM flexprint with AI traces

- $25 \mu m \text{ Kapton}^{\text{TM}}$ frame
- Less than 1% R.L. per layer

• He cooling for 2kW heat generation from the chips

Pulsed Muon Beam Facility (in Operation)

• RIKEN-RAL muon facility

- \cdot 800MeV-300 μ A, 50Hz
- Surface mu: 1.5x10⁶ /sec
- · J-PARC MLF
 - · 3GeV, 1MW (goal), 25Hz
 - Surface mu: > 3x10⁷ /sec
 (from MLF Web site as of
 2016 Jan)

Layout of the RIKEN-RAL Muon Facilty

Pulsed Muon Beam Facility (in construction)

The Graduate University for Advanced Stadies

µ-e conversion search

- Atomic capture of μ^-
 - Decay in orbit (DIO)
 - · electron gets recoil energy
 - · Capture by nucleus
 - resultant nucleus is different
 - $\cdot \tau_{\mu}^{N} < \tau_{\mu}^{free}$ (τ_{μ}^{AI} = 800 nsec)
 - E_{μe}(AI) ~ m_μ-B_μ=105MeV
 B_μ: binding energy of the 1s muonic atom
 - · μ -e conversion

 μ -e conversion

 $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$

 $\mu^- + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$

National University SOKENDAI The Graduate University for Advanced Studies

Muon Decay In Orbit

 $\mu \rightarrow e \overline{\nu} \overline{\nu}$

nuclear muon capture

Mu-e Conversion Electron Energy Spectrum

 \mathcal{B}

Mu-e Conversion Search Experiments

DeeMe

 $\cdot ~~10^{-13-14}$ using C or SiC for muonic atom formation

COMET Phase-I & II

 Al target to reach the 10⁻¹⁴ sensitivity in Phase-I and 10⁻¹⁶ in Phase-II

· Mu2e

 Al target to reach the 10⁻¹⁶ sensitivity

COMET at J-PARC

• Target S.E.S. 2.6×10⁻¹⁷

- Pulsed proton beam at J-PARC
 - Insert empty buckets for necessary pulse-pulse width
 - bunched-slow extraction
- pion production target in a solenoid magnet
- Muon transport & electron momentum analysis using C-shape solenoids
 - smaller detector hit rate
 - need compensating vertical field
- Tracker and calorimeter to measure electrons
- Recently staging plan showed up. The collaboration is making an effort to start physics DAQ as early as possible under this.
 - -14
 - Phase-I 8GeV-3.2kW, < 10
 - Phase-II 8GeV-56kW, < 10

• Target S.E.S. 2×10⁻¹⁷

- uses the antiproton accumulator/debuncher rings to manipulate proton beam bunches
- · No interference with NOvA experiment
 - · Mu2e uses beam NOvA can't
- pion production target in a solenoid magnet
- · S-shape muon transport to eliminate BG and sign-select

Muon Campus Aug 201

· Tracker and calorimeter to measure electrons

 S-curve eliminates backgrounds and sign-selects

• Production: Magnetic bottle traps backward-going π that can decay into accepted μ 's

duate University for Advanced Stadies

Muon Stopping Target Dependence On the model discriminating power

of $\mu \rightarrow e$ conversion in nuclei

Viacenzo Cirigliano^a, Ryuichiro Kitano^{a,i},

Yasuhiro Okada², Paula Tuzon^{1,d}

Different target material contains different quark contents

- May be possible to see the target dependence on the mu-e conversion rate
- Discriminate the principal interaction of the mu-e conversion?
- Possible taget

•

- DeeMe: C (& Si)
- COMET & Mu2e: AI (& Ti in future? & Pb in • far future ??)

	Al	Ti
lifetime	864 ns	330 ns
time window	0.3	0.2
signal	1	1.5
net	0.3	0.3
		- COPC

Muon Precision Physics muon g-2/EDM & Proton radius

muon g-2/EDM measurements

Anomalous magnetic moment (g-2) $a_{\mu} = (g-2)/2 = 11\ 659\ 208.9\ (6.3) \times 10^{-10}\ (BNL\ E821\ exp)$ 0.5 ppm 11\ 659\ 182.8\ (4.9) \times 10^{-10}\ (standard model) $\Delta a_{\mu} = Exp - SM = 26.1\ (8.0) \times 10^{-10}$ 3\sigma anomaly

Fermilab E989

·Goal:

 $\cdot 1.8 \times 10^{11}$ detected high energy decays

·systematic errors ω_a , ω_p ±0.07 ppm each

New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam

3 GeV proton beam (333 uA) Graphite target (20 mm)

> Surface muon beam $(28 \text{ MeV}/\text{c}, 4x10^8/\text{s})$

> > **Muonium Production** $(300 \text{ K} \sim 25 \text{ meV} \Rightarrow 2.3 \text{ keV}/\text{c})$

Surface muon

Super Precision Storage Magnet (3T, ~1ppm local precision)

Muon

storage

Ultra Cold u+ Source

Resonant Laser Ionization of Muonium ($10^6 \, \mu^+/s$)

Muon LINAC (300 MeV/c)

- 1. Ultra-cold μ^+ beam is injected to storage magnet.
- Pulse kicker stops muons in storage area 2.
- 3. Positron tracker measures e+ from $\mu^+ \rightarrow e^+ \nu \nu$ decay for the period of $33\mu s$ (5 x lifetime)

What's different?

- Tertiary Muon Beam
 - Widely spread over phase space
 - Contamination of pions

Electric focusing \Rightarrow Magic momentum

- Ultra-Cold Muon Beam
 - Can be contained in the detection volume w/o focusing

Muonic Hydrogen

nature

- · Formation of μp (highly excited state)
- Laser excitation (2S-2P) after subsequent cascade

Hydrogen Charge Radius

Antognini et al, Science 2013

· ~7 σ discrepancy!

- r_p=0.84037(39) fm (muonic hydrogen lamb shift)
- · r_p=0.8775(51) fm (electron scattering, spectroscopy)

Flavor Physics with B, tau, H, and Z

cLFV Searches and Lepton Universality Tests at Colliders

· cLFV searches

- $\cdot\,$ H/Z boson decays to e/ $\mu,\tau\,$ at LHC
- tau lepton decays at LHC, BES III & Belle (and Belle II soon!)
- · Tensions in B-Physics

•
$$B^{0} \rightarrow D(*) \tau \nu_{\tau} / |\nu| 3.9 \sigma$$
 : LHCb + BaBar + Belle

- · $B^+ \rightarrow K^+ \mu \mu / ee 2.6 \sigma : LHCb$
- · Anomalies b \rightarrow sll , esp. P'5 in B \rightarrow K* $\mu \mu$ @ LHCb 3.4 σ & Belle 2.1 σ
 - New physics effect or long distance charm loop?

er Advanced Stadies

Z' models Buras et al; Altmannshofer,Gori,Pospelov,Yavin; Crivellin,D'Ambrosio,Heeck; ...

Summary

- · Flavor & precise physics experiments
 - Complementary approach to High-Energy Frontier Experiments
- · cLFV experiments using muons.
 - New experiments (MEG II, Mu3e, COMET, Mu2e, DeeMe) are in preparation
- · Precise measurements using muons
 - · FNAL g-2, J-PARC g-2/EDM
 - · Proton radius
- New results from LHC experiments and BES III & Belle

