Lepton flavour violation in a two-Higgs-doublet seesaw model

D. Jurčiukonis ${ }^{1}$, L. Lavoura ${ }^{2}$

${ }^{1}$ Vilnius University, Institute of Theoretical Physics and Astronomy ${ }^{2}$ CFTP, Instituto Superior Tecnico, University of Lisbon

- Description of the model
- Numerical results
- Conclusions

$2 / 188$

- Description of the model
- Numerical results
- Conclusions
scription ofthe model
nericalresults
inclusions

scription of the model
merical results
inclusions
ascription of the model
merical results
inclusions
ascription of the model
merical results
nclusions


```
(hescrintion oof mol
COMR
```


Description of the model

- We consider the Standard Model with two Higgs doublets and enlarge the lepton sector by adding to each lepton family a right handed neutrino singlet v_{R}.
- We assume that all the Yukawa-coupling matrices are diagonal but the Majorana mass matrix M_{R} of the right-handed neutrino singlets is an arbitrary symmetric matrix,
- thereby introducing an explicit but soft violation of all lepton numbers.

The Yukawa Lagrangian of the leptons is

$$
\mathcal{L}_{\mathrm{Y}}=-\sum_{k=1}^{n_{H}} \sum_{\ell, \ell^{\prime}=e, \mu, \tau}\left[\left(\varphi_{k}^{-}, \varphi_{k}^{0^{*}}\right) \bar{\ell}_{R}\left(\Gamma_{k}\right)_{\ell \ell^{\prime}}+\left(\varphi_{k}^{0},-\varphi_{k}^{+}\right) \bar{\nu}_{\ell R}\left(\Delta_{k}\right)_{\ell \ell^{\prime}}\right]\binom{\nu_{\ell^{\prime} L}}{\ell_{L}^{\prime}}+\text { Н.c. }
$$

The mass matrix of the charged leptons and the Dirac neutrino mass matrix are

$$
M_{\ell}=\frac{1}{\sqrt{2}} \sum_{k} v_{k}^{*} \Gamma_{k} \quad M_{D}=\frac{1}{\sqrt{2}} \sum_{k} v_{k} \Delta_{k}
$$

right-handed leptons
ℓ_{R}, ν_{R}

Yukawa coupling $\quad \Gamma_{k}$ are $n_{L} \times n_{L}$ matrices
Δ_{k} are $n_{R} \times n_{L}$

Description of the model

- General case

The left- and right-handed neutrinos are written as linear superpositions of the physical Majorana neutrino fields χ_{i}
$\nu_{\ell L}=\sum_{i}\left(U_{L}\right)_{\ell i} \gamma_{L} \chi_{i} \quad$ and $\quad \nu_{\ell R}=\sum_{i}\left(U_{R}\right)_{\ell i} \gamma_{R} \chi_{i}$

projector operators	$\gamma_{L}=\left(1-\gamma_{5}\right) / 2$
	$\gamma_{R}=\left(1+\gamma_{5}\right) / 2$

$\begin{array}{ll}\text { diagonalization } & \mathcal{U}=\binom{U_{L}}{U_{R}^{*}}, ~\end{array}$
\boldsymbol{U} is defined in such a way that $\quad \mathcal{U}^{T}\left(\begin{array}{cc}0 & M_{D}^{T} \\ M_{D} & M_{R}\end{array}\right) \mathcal{U}=\hat{m}=\operatorname{diag}\left(m_{1}, m_{2}, \ldots, m_{6}\right)$

The charged-current Lagrangian is

$$
\mathcal{L}_{\mathrm{cc}}=\frac{g}{\sqrt{2}} \sum_{\ell, i}\left[W_{\mu}^{-}\left(U_{L}\right)_{\ell i} \bar{\ell} \gamma^{\mu} \gamma_{L} \chi_{i}+W_{\mu}^{+}\left(U_{L}^{\dagger}\right)_{i \ell} \bar{\chi}_{i} \gamma^{\mu} \gamma_{L} \ell\right]
$$

where g is the $\operatorname{SU}(2)$ gauge coupling

The Yukawa couplings to the charged scalars

$$
\mathcal{L}_{\mathrm{Y}}\left(S^{ \pm}\right)=\sum_{a, i, \ell}\left\{S_{a}^{-} \bar{\ell}\left[\left(R_{a}\right)_{\ell i} \gamma_{R}-\left(L_{a}\right)_{\ell i} \gamma_{L}\right] \chi_{i}+S_{a}^{+} \bar{\chi}_{i}\left[\left(R_{a}^{\dagger}\right)_{i \ell} \gamma_{L}-\left(L_{a}^{\dagger}\right)_{i \ell} \gamma_{R}\right] \ell\right\}
$$

where $R_{a}=\Delta_{a}^{\dagger} U_{R}$ and $L_{a}=\Gamma_{a} U_{L}$

Description of the model

- Two Higgs doublets

In the Higgs basis, the VEVs are given by

$$
\left\langle\varphi_{1}^{0}\right\rangle_{0}=\frac{v}{\sqrt{2}}, \quad\left\langle\varphi_{2}^{0}\right\rangle_{0}=0 \quad \text { where } v \approx 246 \mathrm{GeV} \text { is real and positive }
$$

Higgs doublets writes

$$
\phi_{1}=\binom{G^{+}}{\left(v+S_{1}^{0}+i G^{0}\right) / \sqrt{2}}, \quad \phi_{2}=\binom{H^{+}}{\left(S_{2}^{0}+i S_{3}^{0}\right) / \sqrt{2}}
$$

where G^{+}and G^{0} are Goldstone bosons, H^{+}is a physical charged scalar with the mass m_{C}, and $S_{1,2,3}^{0}$ are physical neutral scalars. The scalar S_{1}^{0} has couplings fully identical to the ones of the SM Higgs boson.

We parametrize the flavour-diagonal Yukawa coupling matrices as

$$
\begin{aligned}
\Gamma_{1} & =\frac{\sqrt{2}}{v} \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)=\frac{\sqrt{2}}{v} M_{\ell}, \\
\Gamma_{2} & =\operatorname{diag}\left(\gamma_{e}, \gamma_{\mu}, \gamma_{\tau}\right), \\
\Delta_{1} & =\operatorname{diag}\left(d_{e}, d_{\mu}, d_{\tau}\right)=\frac{\sqrt{2}}{v} M_{D},
\end{aligned} \quad \begin{aligned}
& \left(R_{1}\right)_{\ell n}=d_{\ell}^{*}\left(U_{R}\right)_{\ell n} \\
& \left(R_{2}\right)_{\ell n}=\delta_{\ell}^{*}\left(U_{R}\right)_{\ell n} \\
& \Delta_{2}=\operatorname{diag}\left(\delta_{e}, \delta_{\mu}, \delta_{\tau}\right) . \\
& M_{D}=\operatorname{diag}(a, b, c)
\end{aligned} \quad \begin{aligned}
& \left(L_{1}\right)_{\ell n}=\frac{\sqrt{2} m_{\ell}}{v}\left(U_{L}\right)_{\ell n}, \\
& \left(L_{2}\right)_{\ell n}=\gamma_{\ell}\left(U_{L}\right)_{\ell n}
\end{aligned}
$$

Description of the model

- The amplitude of the process

We compute one loop amplitude for the process $\tau^{-}\left(p_{1}\right) \rightarrow \mu^{-}\left(p_{2}\right) \gamma(q)$

The amplitude consists from three contributions:

- $W^{ \pm}$- exchange contribution,
- contribution of the charged Goldstone boson,
- contribution from diagrams in which the photon attaches either to the $W^{ \pm}$or to the charged scalar in the loop.

The amplitude writes

$$
\begin{array}{rll}
M^{\rho}= & e \sum_{n=1}^{6} \overline{u_{\mu}}\left\{i \sigma^{\rho \lambda} q_{\lambda} \sqrt{a_{L n}} \gamma_{L}+\sqrt[a_{R n}]{ } \gamma_{R}\right) & \begin{array}{l}
\text { W. Grimus, L. Lavoura } \\
\text { [hep-ph/0204070] }
\end{array} \\
& +b_{L n}\left[q^{\rho} \gamma_{L}-\frac{q^{2}}{m_{\tau}^{2}-m_{\mu}^{2}} \gamma^{\rho}\left(m_{\mu} \gamma_{L}+m_{\tau} \gamma_{R}\right)\right] & \\
& \left.+b_{R n}\left[q^{\rho} \gamma_{R}-\frac{q^{2}}{m_{\tau}^{2}-m_{\mu}^{2}} \gamma^{\rho}\left(m_{\mu} \gamma_{R}+m_{\tau} \gamma_{L}\right)\right]\right\} u_{\tau}
\end{array}
$$

It is finite and respects gauge invariance.
The four-momentum $q^{\rho}=p_{1}^{\rho}-p_{2}^{\rho}$ belongs to the outgoing photon; p_{1}^{ρ} is the four-momentum of the incoming τ lepton and p_{2}^{ρ} is four-momentum of the outgoing μ lepton.

The parameters b are irrelevant when the photon is on mass shell.

Description of the model

- Coefficients of the amplitude

The coefficients a are given by

$$
\begin{aligned}
a_{L n}= & \left(U_{L}\right)_{\mu n}\left(U_{L}^{*}\right)_{\tau n}\left\{m _ { \mu } \left[g^{2}\left(d_{2 n W}+f_{n W}+c_{1 n W}\right)+\frac{2 m_{\tau}^{2}}{v^{2}} k_{1 n W}\right.\right. \\
& \left.+\frac{2 m_{n}^{2}}{v^{2}}\left(k_{2 n W}-k_{3 n W}\right)\right] \\
& \left.+m_{\tau} \gamma_{\mu} \gamma_{\tau}^{*} k_{1 n C}-\frac{\sqrt{2} m_{n}^{2} \gamma_{\mu}}{v} \frac{\delta_{\tau}}{d_{\tau}} k_{3 n C}+\frac{2 m_{n}^{2} m_{\mu}}{v^{2}} \frac{\delta_{\mu}^{*}}{d_{\mu}^{*}} \frac{\delta_{\tau}}{d_{\tau}} k_{2 n C}\right\} \\
a_{R n}= & \left(U_{L}\right)_{\mu n}\left(U_{L}^{*}\right)_{\tau n}\left\{m _ { \tau } \left[g^{2}\left(d_{1 n W}+f_{n W}+c_{2 n W}\right)+\frac{2 m_{\mu}^{2}}{v^{2}} k_{2 n W}\right.\right. \\
& \left.+\frac{2 m_{n}^{2}}{v^{2}}\left(k_{1 n W}-k_{3 n W}\right)\right] \\
& \left.+m_{\mu} \gamma_{\mu} \gamma_{\tau}^{*} k_{2 n C}-\frac{\sqrt{2} m_{n}^{2} \gamma_{\tau}^{*}}{v} \frac{\delta_{\mu}^{*}}{d_{\mu}^{*}} k_{3 n C}+\frac{2 m_{n}^{2} m_{\tau}}{v^{2}} \frac{\delta_{\mu}^{*}}{d_{\mu}^{*}} \frac{\delta_{\tau}}{d_{\tau}} k_{1 n C}\right\}
\end{aligned}
$$

Where

$$
\begin{aligned}
k_{1 n W} & =d_{1 n W}+f_{n W}-c_{1 n W} \\
k_{2 n W} & =d_{2 n W}+f_{n W}-c_{2 n W} \\
k_{3 n W} & =c_{1 n W}+c_{2 n W}-a_{3 n W},
\end{aligned}
$$

and similarly with $W \rightarrow C$ in the indices.

Description of the model

- Feynman integrals

The coefficient are defined in the following way

$$
\begin{aligned}
& a_{n W} \\
= & \int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-m_{n}^{2}\right)\left[\left(k-p_{1}\right)^{2}-m_{W}^{2}\right]\left[\left(k-p_{2}\right)^{2}-m_{W}^{2}\right]}, \\
= & c_{1 n W} p_{1}^{\theta}+c_{2 n W} p_{2}^{\theta} \\
= & d_{1 n W} \frac{\mathrm{~d}^{4} k}{\left(2 \pi p^{4} p_{1}^{\psi}\right.} \frac{k^{\theta}}{\left(k^{2}-m_{n}^{2}\right)\left[\left(k-p_{2 n W}\right)^{2}-m_{2}^{2}\right]\left[\left(k-p_{2}\right)^{2}-m_{2}^{\psi}+f_{n W}\left(p_{1}^{\theta} p_{2}^{\psi}+p_{2}^{\theta} p_{1}^{\psi}\right)+u_{n W} g^{\theta \psi}\right.} \\
= & \int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{k^{\theta} k^{\psi}}{\left(k^{2}-m_{n}^{2}\right)\left[\left(k-p_{1}\right)^{2}-m_{W}^{2}\right]\left[\left(k-p_{2}\right)^{2}-m_{W}^{2}\right]}
\end{aligned}
$$

and similarly with $W \rightarrow C$ in the indices.

The infinities in the amplitude cancel for the:

- unitarity of the diagonalization matrix U,
- flavour-diagonal Yukawa coupling matrices.

More generally, these reasons are responsible for the cancellation of all terms independent of the neutrino masses m_{n}.

Where

$$
\begin{aligned}
\Delta & =K+p_{1}^{2}(1-x)(y-x)-p_{2}^{2}(1-x) y \\
K & \equiv m_{n}^{2}(1-x)+m_{W}^{2} x
\end{aligned}
$$

Description of the model

- BR and M_{R} calculations

The partial width

$$
\Gamma_{\text {partial }}\left(\tau^{-} \rightarrow \mu^{-} \gamma\right)=\frac{\alpha\left(m_{\tau}^{2}-m_{\mu}^{2}\right)^{3}}{4 m_{\tau}^{3}}\left(\left.\left|\sum_{n=1}^{6}\right| a_{L n}\right|^{2}+\left.\left|\sum_{n=1}^{6}\right| a_{R n}\right|^{2}\right)
$$

The branching ratio

$$
\operatorname{BR}\left(\tau^{-} \rightarrow \mu^{-} \gamma\right)=\frac{\Gamma_{\text {partial }}\left(\tau^{-} \rightarrow \mu^{-} \gamma\right)}{\Gamma_{\text {total }}\left(\tau^{-}\right)}
$$

The mass matrix of the light neutrinos is obtained by the seesaw formula

$$
\mathcal{M}_{\nu}=-M_{D}^{T} M_{R}^{-1} M_{D}=-\frac{v^{2}}{2} \Delta_{1} M_{R}^{-1} \Delta_{1}
$$

Inverting previous equation, we obtain

$$
M_{R}=-\frac{v^{2}}{2} \Delta_{1} \mathcal{M}_{\nu}^{-1} \Delta_{1}
$$

The matrix M_{v} is diagonalized as

$$
V_{L}^{T} \mathcal{M}_{\nu} V_{L}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \equiv \hat{m} \quad \text { where } \quad V_{L}=e^{i \hat{\alpha}} U_{\text {PMNS }} e^{i \hat{\beta}}
$$

using the fact that the matrices $\Delta_{1}, \hat{m}, e^{i \hat{\alpha}}$ and $e^{i \hat{\beta}}$ are diagonal we obtain

$$
M_{R}=-\frac{v^{2}}{2} e^{i \hat{\alpha}} \Delta_{1} U_{\mathrm{PMNS}}\left(e^{2 i \hat{\beta}} \hat{m}^{-1}\right) U_{\mathrm{PMNS}}^{T} \Delta_{1} e^{i \hat{\alpha}}
$$

Numerics

- Assumptions and exp. bounds

We make some simplifying assumptions:

- all the parameters of the model are real
- $U_{\text {PMNS }}$ is real too
- $e^{i \hat{\alpha}}=e^{i \hat{\beta}}=\mathbb{1}$

Generating m_{1} in the range 10^{-6} to 0.1 eV , we obtain for the other two light neutrino masses

$$
\begin{aligned}
& m_{2}=\sqrt{m_{1}^{2}+\Delta m_{21}^{2}} \\
& m_{3}=\sqrt{m_{1}^{2}+\Delta m_{31}^{2}}
\end{aligned}
$$

We allow oscillations parameters to vary in 1σ bounds

HN		IH
	bfp $\pm 1 \sigma$	bfp $\pm 1 \sigma$
$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.013}$	$0.304_{-0.012}^{+0.013}$
$\theta_{12} /{ }^{\circ}$	$33.48_{-0.75}^{+0.78}$	$33.48_{-0.75}^{+0.78}$
$\sin ^{2} \theta_{23}$	$0.452_{-0.028}^{+0.052}$	$0.579_{-0.037}^{+0.025}$
$\theta_{23} /{ }^{\circ}$	$42.3{ }_{-1.6}^{+3.0}$	$49.5{ }_{-2.2}^{+1.5}$
$\sin ^{2} \theta_{13}$	$0.0218_{-0.0010}^{+0.0010}$	$0.0219_{-0.0010}^{+0.0011}$
$\theta_{13}{ }^{\circ}$	$8.50{ }_{-0.21}^{+0.20}$	$8.51_{-0.21}^{+0.20}$
$\delta_{\mathrm{CP}} /{ }^{\circ}$	$306{ }_{-70}^{+39}$	$254{ }_{-62}^{+63}$
$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.50{ }_{-0.17}^{+0.19}$	$7.50_{-0.17}^{+0.19}$
$\frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.457_{-0.047}^{+0.047}$	$-2.449_{-0.047}^{+0.048}$

M.C. Gonzalez-Garcia et all. [arXiv:1106.0034 [hep-ph]]

The experimental bounds of the branching ratios

$$
\begin{array}{ll}
\operatorname{BR}\left(\mu^{+} \rightarrow e^{+} \gamma\right)<4.2 \times 10^{-13} & \text { A.M Baldini et all. [arXiv:1606.05081 [hep-ex]] } \\
\operatorname{BR}\left(\tau^{-} \rightarrow e^{-} \gamma\right)<3.3 \times 10^{-8} & \text { C Patrignani et all. (PDG), Chin. Phys. C } 40 \text { (2016) } 100001 \\
\operatorname{BR}\left(\tau^{-} \rightarrow \mu^{-} \gamma\right)<4.4 \times 10^{-8} &
\end{array}
$$

Numerics

- The case with NH and masses of the heavy neutrinos $0.1<m_{R}<500 \mathrm{TeV}$

We generate impute parameters a, b and c which parametrize Yukawa coupling matrix

$$
M_{D}=\operatorname{diag}(a, b, c)
$$

and determinate the magnitude of the masses of heavy neutrinos.

We assume that $\gamma_{\ell_{1}}=\gamma_{\ell_{2}}=0$,
because the impact of gamma's to BR is not significant.

Calculations were made assuming:

- $0.1<a, b, c<3 \mathrm{MeV}$
- $0.1<m_{\mathrm{R}}<500 \mathrm{TeV}$
- $m_{\mathrm{C}}=500 \mathrm{GeV}$

Numerics

- The case with IH and masses of the heavy neutrinos $0.1<m_{R}<500 \mathrm{TeV}$

Calculations were made assuming:

- $0.1<a, b, c<3 \mathrm{MeV}$
- $0.1<m_{\mathrm{R}}<500 \mathrm{TeV}$
- $m_{\mathrm{C}}=500 \mathrm{GeV}$

For the case with inverted ordering of light neutrinos branching ratios receive larger values comparing with normal ordering of neutrinos

Numerics

- BR as functions of delta's and mass of charged scalar

By fixing some point of the previous plots with NH we extrapolate BR as functions of delta's \qquad
assuming that $\quad \gamma_{\ell_{1}}=\gamma_{\ell_{2}}=0$

Numerics

- Scatter plots for different m_{C}

Calculations were made assuming:

- $0.1<a, b, c<3 \mathrm{MeV}$
- $0.1<m_{\mathrm{R}}<500 \mathrm{TeV}$
- $m_{\mathrm{C}}=500 \mathrm{GeV}$
- $\delta_{l_{1}}=\delta_{l 2}=5$

Numerics

- Scatter plots for different ranges

 of input parameters a, b and cCalculations were made assuming:

- $m_{\mathrm{R}}>0.1 \mathrm{TeV}$
- $m_{\mathrm{C}}=500 \mathrm{GeV}$
- $\delta l_{1}=\delta_{l_{2}}=5$

in this case we do not restricted m_{R} from above. Comparing with first figures we see wider distributions of branching ratios having smaller values.

$$
\operatorname{BR}\left(\tau^{-} \rightarrow \mu^{-} \gamma\right)
$$

Numerics

- Distributions of m_{R}

Assumptions:

- $0.1<a, b, c<3 \mathrm{MeV}$
- $m_{\mathrm{R}}>0.1 \mathrm{TeV}$
- $m_{\mathrm{C}}=500 \mathrm{GeV}$
- figures on the left illustrate distributions of the masses of heavy neutrinos with normalized probability
- figures on the right shows dependence of $\mathrm{BR}(\tau \rightarrow \mu \gamma)$ from the masses of heavy neutrinos

Numerics

- The case with NH and masses of the heavy neutrinos $0.1<m_{R}<10 \mathrm{TeV}$

Calculations were made assuming:

- $0.1<a, b, c<3 \mathrm{MeV}$
- $0.1<m_{\mathrm{R}}<10 \mathrm{TeV}$
- $m_{\mathrm{C}}=500 \mathrm{GeV}$

Restricting all masses of heavy neutrinos < 10 TeV we receive lower values of branching ratios

Conclusions

- Using Higgs basis (the basis for the Higgs doublets wherein only one of them has nonzero VEV) we simplify model which gives good results.
- We have employed several simplifying assumptions in order to reduce the parameter space of the model.
- In this model is possible to find the parameter space where all three branching ratios of the decay $I_{1} \rightarrow I_{2} Y$ are simultaneously close to their experimental limits.
- The idea of the model could be adopted for the processes $Z \rightarrow I_{1} I_{2}$ and $H \rightarrow I_{1} I_{2}$. Work is in progress...

Thank You...

