Neutrino absorption in the Earth and measurement of the neutrinonucleon cross-section at multi-TeV energies with IceCube

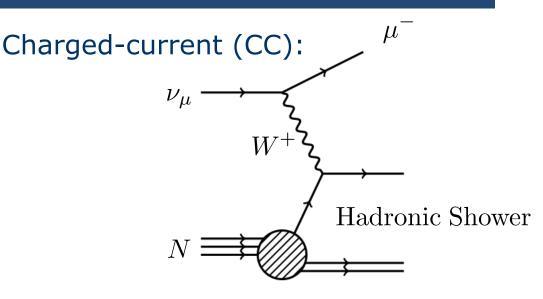
Sandra Miarecki, Spencer Klein, Gary Binder* for the IceCube Collaboration

University of California, Berkeley Lawrence Berkeley National Laboratory

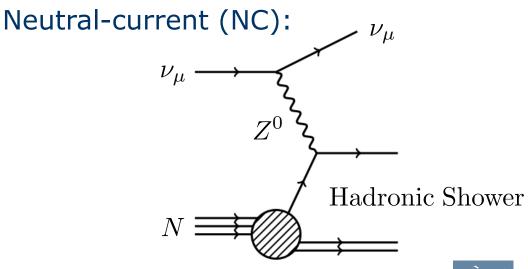
WIN2017, June 19 - 24, 2017

Outline

• Neutrino cross section: calculation and measurements

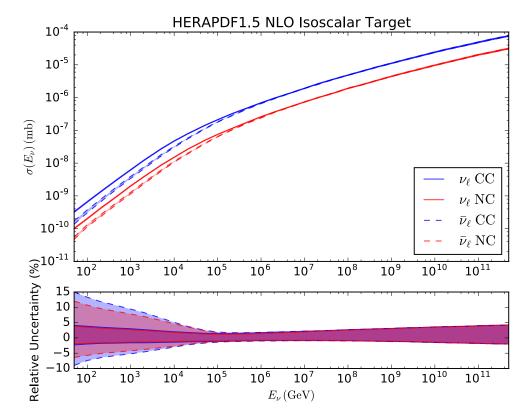

• Absorption of high-energy neutrinos in the Earth

• Measurement of the neutrino cross section with IceCube



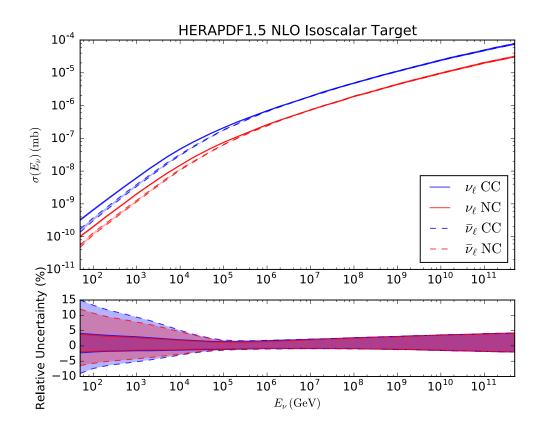
High-Energy Neutrino Interactions

 At high energies, neutrinos interact primarily with nuclei through weak charged and neutral-current processes


 At energies above ~10 GeV, neutrinos probe the quark and gluon structure of the nucleon: deep inelastic scattering (DIS)

Neutrino-Nucleon Cross Section

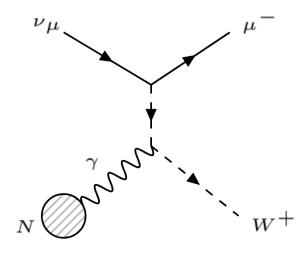
- Cross section rises linearly until its growth is slowed by the finite W,Z boson masses above ~10 TeV
- Above ~10 TeV, growth is governed by the behavior of sea quarks and gluons at low Bjorken-x
- Below this energy, the antineutrino cross section is smaller by a factor of 2
- NC cross section smaller than CC by a factor of 3



A. Cooper-Sarkar, P. Mertsch, S. Sarkar JHEP 08 (2011) 042

Neutrino-Nucleon Cross Section

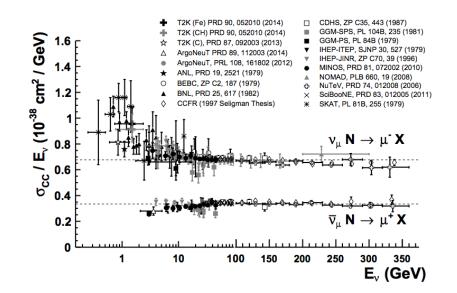
- Calculation relies on knowledge of nucleon structure as described through parton distribution functions (PDFs)
- Proton PDFs measured at the HERA ep collider can be used to predict the neutrino DIS cross section to high precision (< 5%) over a large energy range



A. Cooper-Sarkar, P. Mertsch, S. Sarkar JHEP 08 (2011) 042

Additional Effects on Cross Section

- Additional Standard Model effects may go beyond this uncertainty estimate
 - Nuclear shadowing
 - Treatment of heavy quark masses
 - Gluon saturation at ultra-high energies
 - Electromagnetic W-boson production in nuclear Coulomb field: $\nu_{\mu}N \rightarrow \mu^{-}W^{+}N$
- Physics beyond the Standard Model may cause a large enhancement at high energies:
 - Low-scale quantum gravity models, leptoquarks...
 - LHC center-of-mass energy reached at 100 PeV neutrino energy

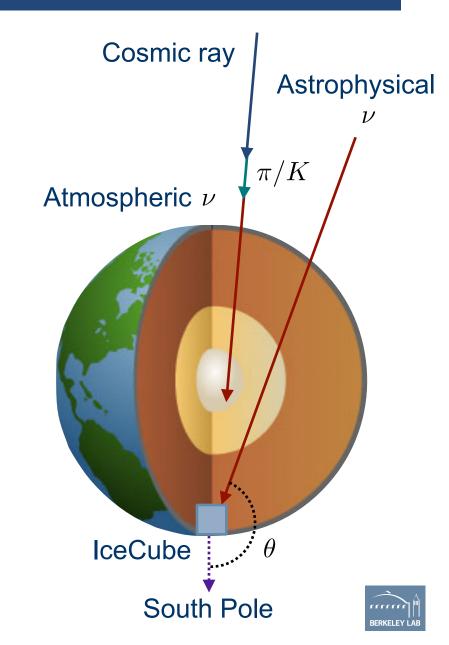

Previous Measurements

- Neutrino DIS cross sections measured up to 360 GeV in many accelerator-based experiments
- Measuring total cross section required knowledge of the absolute neutrino flux:

 $\frac{dN}{dE}(E) \propto \sigma(E)\Phi(E)$

- In many experiments, absolute flux was calibrated by assuming the world-average measurement
- Neutrino telescopes can access much higher energies and don't need an absolute flux calibration

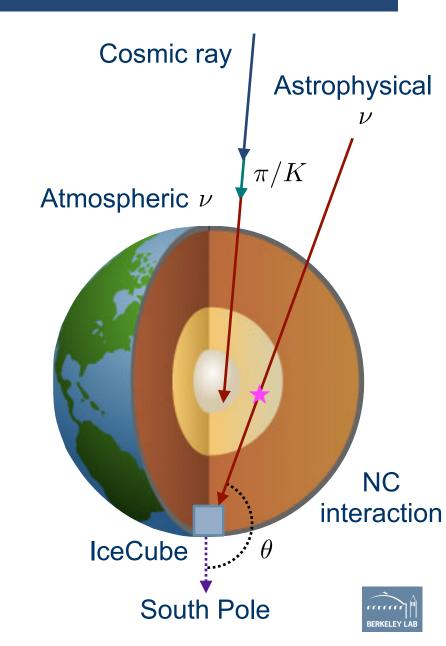
C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)


World average:

$$\frac{\sigma^{\nu,CC}}{E} = 0.677 \pm 0.014 \times 10^{-38} \,\mathrm{cm}^2 \,\mathrm{GeV}^{-1}$$

Neutrino Absorption in the Earth

- Atmospheric and astrophysical neutrinos can be absorbed when passing through the Earth
- A 40 TeV neutrino has a mean free path of about one Earth diameter
- At the South Pole, IceCube can detect the variation in absorption as a function of zenith angle, θ

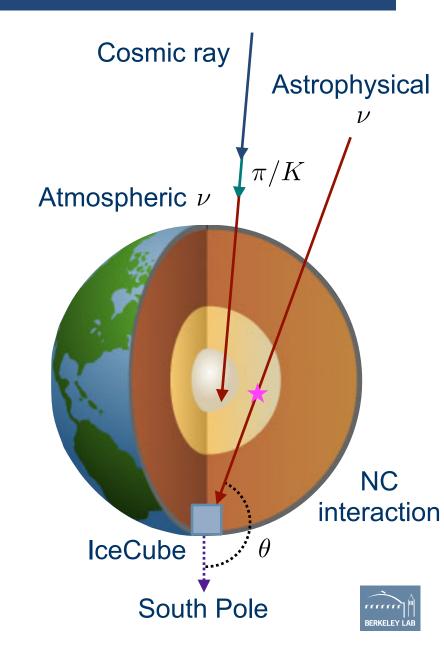

Neutrino Absorption in the Earth

9

 Flux attenuation approximately described by:

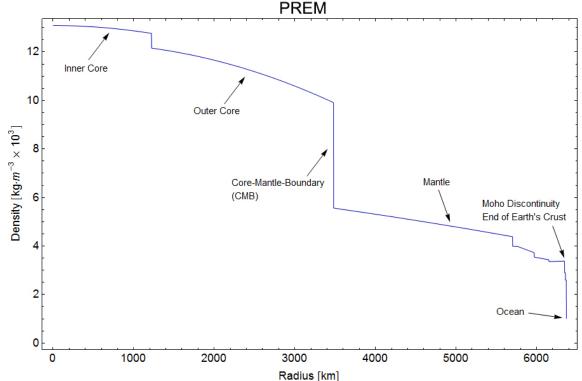
 $\frac{dN}{dE}(E,\theta) \propto \sigma(E) \Phi(E,\theta) e^{-\sigma(E)X(\theta)/M}$

- Neutrinos can still be transmitted after neutralcurrent interactions, but with lower energy
- Treated through Monte Carlo simulation


Neutrino Absorption in the Earth

10

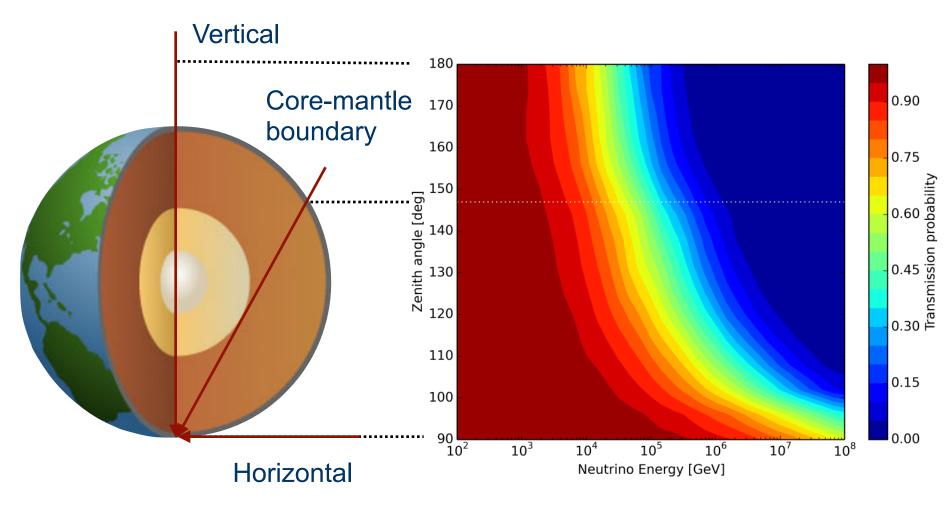
 Flux attenuation approximately described by:


 $\frac{dN}{dE}(E,\theta) \propto \sigma(E) \Phi(E,\theta) e^{-\sigma(E)X(\theta)/M}$

- Don't need to know absolute neutrino flux to measure cross section
- Must know column depth through the Earth and neutrino flux as a function of zenith angle

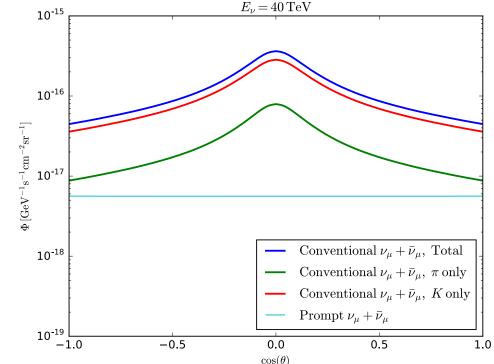
Earth Density Model

- Preliminary Earth Reference Model
- Seismic wave studies tightly constrain the density profile of the Earth
- Well-known mass and moment of inertia of the Earth provide additional constraints
- Column depth known to an accuracy of ~1-2%



A. M. Dziewonski and D. L. Anderson, Physics of the Earth and Planetary Interiors 25 (1981) 297–356.

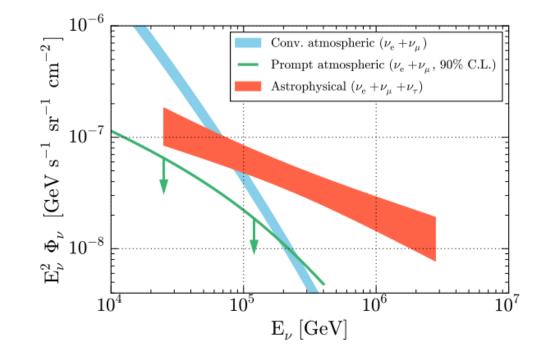
Transmission Probability


• Monte Carlo calculation of neutrino transmission probability

Atmospheric Fluxes

- Conventional atmospheric flux
 - Pion/kaon decays
 - Zenith-dependent (atmospheric density profile)
 - $\Phi(E) \sim E^{-3.7}$
- Prompt atmospheric flux
 - Charm hadron decays
 - Isotropic
 - $\Phi(E) \sim E^{-2.7}$
 - Not yet observed

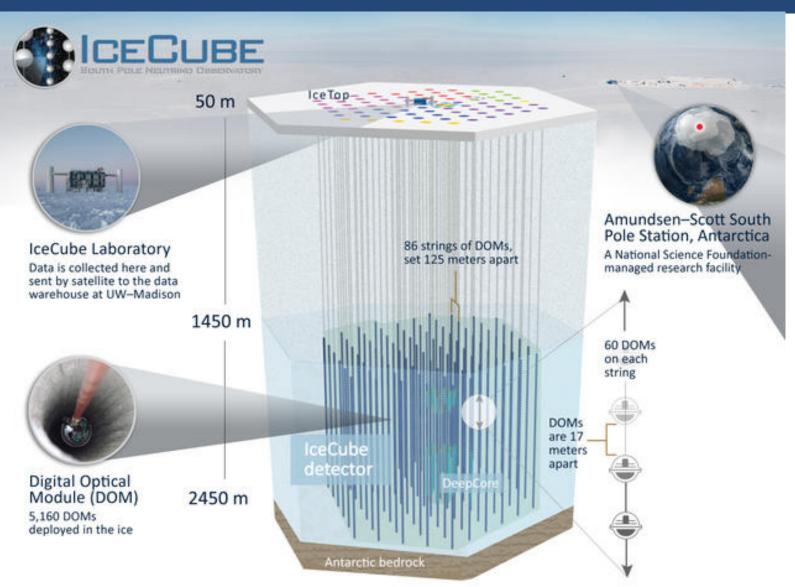
Conventional flux calculation:


M. Honda et al. Phys. Rev. D 75 043006 (2007) Prompt flux calculation:

> R. Enberg, M. Reno, I. Sarcevic Phys. Rev. D 78 043005 (2008)

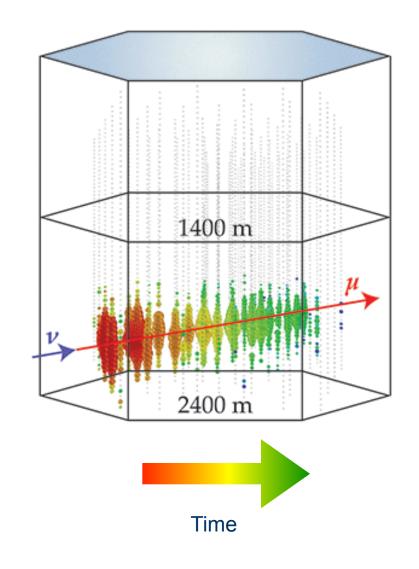
Astrophysical Flux

- Isotropic; no large galactic contribution or point sources found yet
- Global analysis of IceCube data is consistent with a power-law flux from 20 TeV - 2 PeV

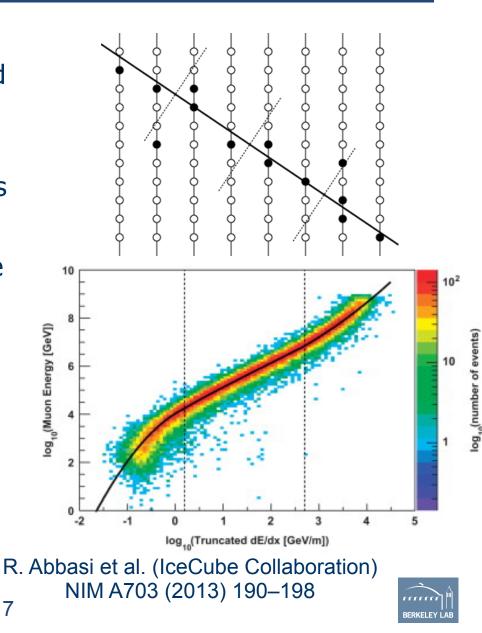

M. Aartsen et al. (IceCube Collaboration) Astrophysical Journal 809, 98 (2015)

• Best-fit flux per flavor:

$$\Phi(E) = (2.2 \pm 0.4) \times 10^{-18} \left(\frac{E}{100 \,\mathrm{TeV}}\right)^{-2.50 \pm 0.09} \,\mathrm{GeV^{-1}s^{-1}cm^{-2}sr^{-1}}$$

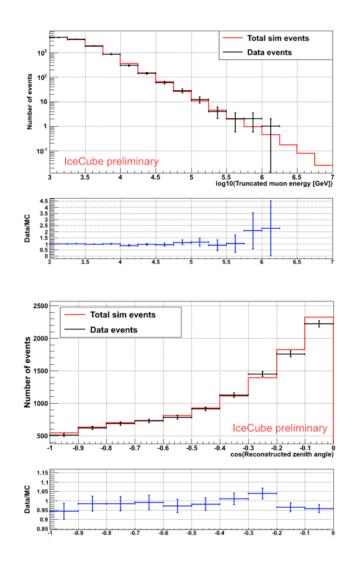

The IceCube Neutrino Observatory

Data Sample


- Use a sample of upward going neutrino-induced muons
 - Cherenkov light recorded by DOMs
 - Timing information provides excellent angular resolution (< 1 degree)
- Negligible background of misreconstructed down-going cosmic-ray muons
- One year of data from 2010-2011 with the partially complete 79-string configuration of IceCube
- 10,784 events observed

Muon Energy Reconstruction

- Split muon track into bins and measure the mean energy loss rate, $\langle dE/dx \rangle$
- At energies > 1 TeV, $\langle dE/dx \rangle$ is correlated with muon energy
- Since muon energy losses are stochastic and have a large non-Gaussian tail, throwing out the largest 40% of bins improves performance
- Factor of ~2 muon energy resolution



Measurement Method

- Fit the 2D distribution of reconstructed muon energy and zenith angle
- Measure an overall scaling factor of the neutrino/antineutrino charged and neutral current cross sections:

$$R = \frac{\sigma_{\text{meas.}}}{\sigma_{SM}}$$

 Treat flux and detector systematic uncertainties as nuisance parameters

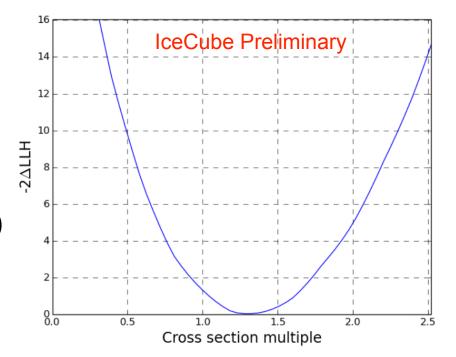
Systematic Uncertainties

- Systematics considered, in rough order of importance:
 - Ice model: light absorption and scattering
 - Atmospheric flux:
 - Pion/kaon production ratio
 - Neutrino/antineutrino ratio
 - Cosmic ray spectral index
 - Astrophysical flux:
 - Spectral index and normalization
 - DOM optical efficiency
 - Earth density profile
 - Atmospheric density profile

Fit Results

- Previous IceCube flux measurements used for prior constraints on nuisance parameters
- Since the Standard Model cross section was assumed, constrain cross section times flux normalization
- No large deviations from expected values of nuisance parameters

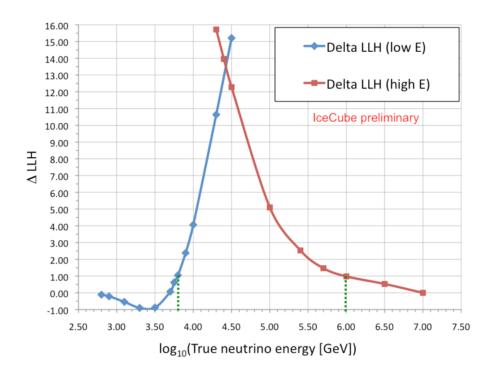
Result	Baseline/units	Nuisance Parameter	Nuisance Parameter
		Input & uncertainty σ	Fit result
$\Phi_{\rm Conv.} imes \sigma$	Ref. [25] × R ($R = \sigma_{\text{meas.}} / \sigma_{\text{SM}}$)	1.0 ± 0.25	0.92 ± 0.03
$\Phi_{\rm Conv.}$ spectral index	Ref. [25] with knee	0.00 ± 0.05	$+0.007 \pm 0.001$
${\rm K}/\pi$ ratio	Ref. [25] baseline	1.0 ± 0.1	1.05 ± 0.09
$ u/\overline{ u} $ ratio	Ref. [25] baseline	1.0 ± 0.1	1.01 ± 0.005
$\Phi_{\mathrm{prompt}} imes \sigma$	Ref. [26] $\times R$	$0.0\substack{+1.0 \\ -0.0}$	$0.5\substack{+0.40 \\ -0.34}$
$\Phi_{ m astro.} imes \sigma$	Ref. $[10] \times R$	2.23 ± 0.4	$2.62\substack{+0.05 \\ -0.07}$
Astrophysical index (γ)	2.50 ± 0.09	2.42 ± 0.02
DOM Efficiency	IceCube Baseline	1.0 ± 0.1	1.05 ± 0.01

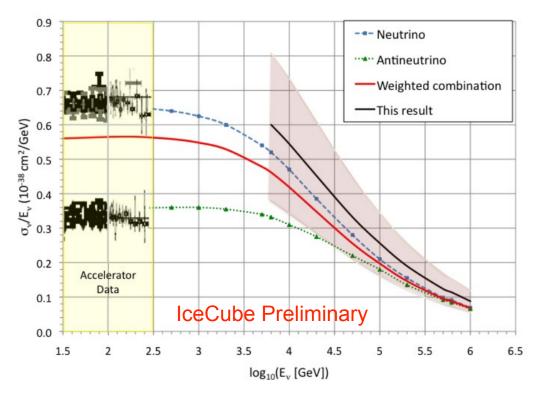

IceCube Preliminary

Cross Section Result

- Log-likelihood ratio scan across cross section multiple
- Zero absorption in the Earth strongly rejected
- Best-fit multiple of cross section:

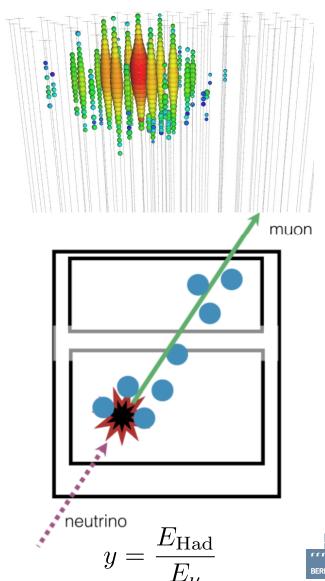
 $\frac{\sigma_{\text{meas.}}}{\sigma_{SM}} = 1.30^{+0.21}_{-0.19} \,(\text{stat.}) \,{}^{+0.39}_{-0.43} \,(\text{syst.})$


 Consistent with Standard Model cross section within statistical and systematic uncertainties


Sensitive Energy Range

- Over what energy range is there sensitivity to neutrino absorption?
- Consider the Earth to be transparent below a given low energy threshold
- Move the threshold upward until the log-likelihood ratio becomes $-2\Delta LLH = 1$
- Repeat for a high energy threshold moving downwards
- Sensitive energy range:
 6 TeV 980 TeV

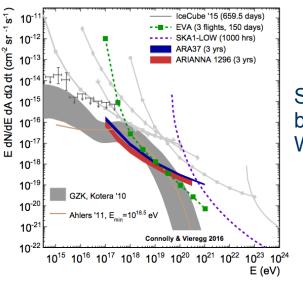
Comparison to Previous Results


- 2 orders of magnitude higher in energy than previous acceleratorbased measurements
- Measurement reflects a flux-weighted sum of neutrinos and antineutrinos
- First measurement where the DIS cross section is no longer linear in energy
- Consistent with current Standard Model calculations

Future Directions

- 6 more years of data are available and could reduce uncertainties below 20% and enable a binned measurement across energy
- Additional neutrino detection channels are useful:
 - Cascades: Gain more high energy ν_e and ν_{τ} events
 - Starting tracks: Reconstruct inelasticity when the interaction vertex is contained; measure differential cross section, $d\sigma/dy$

2 PeV cascade


Future Directions

 The ~10 km³ IceCube-Gen2 expansion could reach even higher energies

"IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica" arXiv:1412.5106

 Radio detection techniques (e.g. ARIANNA/ARA) could access the most interesting energies > 100 PeV using GZK neutrinos

See parallel by S. Klein on Wed. 6/21

