Charged lepton flavour violation/lepton number violation searches and studies with the CMS experiment

Sören Erdweg\(^1\)
on behalf of theCMS Collaboration

\(^1\)RWTH Aachen, Physics Institute III A
Overview

Motivation

- Observation of lepton flavour violation in neutrino sector:
 - Search for lepton flavour violation in the charged leptons
 - Highly suppressed in the Standard Model
 - → Striking signature for new physics

- New beyond the Standard Model (BSM) particles might decay lepton flavour violating
 - Little standard model background
Motivation

- Observation of lepton flavour violation in neutrino sector:
 - Search for lepton flavour violation in the charged leptons
 - Highly suppressed in the Standard Model
 - → Striking signature for new physics
- New beyond the Standard Model (BSM) particles might decay lepton flavour violating
 - Little standard model background

Approach

- Search for resonances decaying with lepton flavour violation
 - Z boson ($\rightarrow e\mu$)
 - H boson ($\rightarrow e\tau$ or $\mu\tau$)
 - BSM particles ($\rightarrow e\mu$)

- Z boson (91 GeV)
- H boson (125 GeV)
- BSM particles ($\text{few } 100 \text{ GeV - multi TeV}$)
Presented analysis

- Medium and heavy mass resonances decaying with lepton flavour violation
- Personal selection of presented analysis

Some other CMS LFV analyses

- Search for lepton flavour violating decays of the Higgs boson to $e\tau$ and $e\mu$ in proton-proton collisions at $\sqrt{s} = 8$ TeV PLB 763C (2016) 472
- Search for heavy Majorana neutrinos in $e^\pm e^\pm$ plus jets and $e^\pm \mu^\pm$ plus jets events in proton-proton collisions at $\sqrt{s} = 8$ TeV 1603.02248
- Search for displaced leptons in the $e - \mu$ channel EXO-16-022
- Search for R-parity violating supersymmetry with displaced vertices 1610.05133
- Search for R-parity violating supersymmetry in dilepton channels SUS-14-018
Outline

1. Introduction
 - Overview
 - LHC & CMS

2. Z-Boson

3. Higgs-Boson

4. BSM particle

5. Summary

\[M = 1.9 \text{ TeV} \]
Key figures
Key figures

- $\sqrt{s} = 13$ TeV
Key figures

- $\sqrt{s} = 13 \text{ TeV}$
- $\mathcal{L} = 1.53 \cdot 10^{34} \text{s}^{-1} \text{cm}^{-2}$
High rate
(HL) Trigger rate up to 1 kHz
High rate
(HL) Trigger rate up to 1 kHz

High resolution
e.g. muon p_T
resolution $< 8\%$ at $p_T = 1 \text{ TeV}$
High rate
(HL) Trigger rate up to 1 kHz

High resolution
e.g. muon p_T
resolution $< 8\%$ at
$p_T = 1$ TeV

High efficiency
e.g. Hadronically decaying tau
reconstruction and identification
efficiency: $> 55\%$ for
$p_T > 30$ GeV
Very successful data taking over many years

- LFV Z decays: 2012, 8 TeV
- LFV BSM particle decays: 2015, 13 TeV
- LFV H decays: 2016, 13 TeV
Outline

1. Introduction
2. Z-Boson
 - Introduction
 - Result
3. Higgs-Boson
4. BSM particle
5. Summary

\[M_{e\mu} = 1.9 \text{ TeV} \]
Motivation

- $Z \to e\mu$ suppressed in the SM ($\text{BR} < 4 \cdot 10^{-60}$)
- Clear signature for new physics ($\mu^+e^- \text{ or } \mu^-e^+$)
Motivation

- $Z \rightarrow e\mu$ suppressed in the SM ($\text{BR} < 4 \cdot 10^{-60}$)
- Clear signature for new physics ($\mu^+e^- \text{ or } \mu^-e^+$)

Analysis key points

- 2012 data set of up to 19.7 fb^{-1} of proton-proton data at $\sqrt{s} = 8 \text{ TeV}$
- Search for Z mass resonance
Introduction

Motivation
- $Z \rightarrow e\mu$ suppressed in the SM ($\text{BR} < 4 \cdot 10^{-60}$)
- Clear signature for new physics ($\mu^+e^- \text{ or } \mu^-e^+$)

Analysis key points
- 2012 data set of up to 19.7 fb^{-1} of proton-proton data at $\sqrt{s} = 8 \text{ TeV}$
- Search for Z mass resonance

Event selection
- Trigger: electron + muon ($E_T > 17 \text{ GeV}$ and $E_T > 8 \text{ GeV}$)
- Particle flow identification/isolation criteria for electron / muon
- Veto other leptons, high p_T Jets, $m_T(\mu, E_T^{\text{miss}}) < 60 \text{ GeV}$, $p_T^{e\mu} < 10 \text{ GeV}$
- Selection efficiency: 6.6%
Result

![Graph showing data and backgrounds.](image)

Events / 3.00

- **Data**
- **Bkg uncertainty**
- **Signal, B(Z → eμ) = 1 x 10^{-6}**
- **Z → ττ**
- **tt, tW, TW**
- **Diboson, Z → ee/μμ**
- **Misidentified leptons**

CMS Preliminary

19.7 fb^{-1} (8 TeV)

Data/Bkg.

- 0.5
- 1
- 1.5

m_{eμ} (GeV)

- 80
- 85
- 90
- 95
- 100

- **Misidentified leptons** (8 TeV)

- 19.7 fb

CMS Preliminary
Systematic uncertainties

Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- μ p_T scale: 2.9% (0.2%)
- e E_T scale: 3.1% (1.1%)
- E_T^{miss}: 0.6% (2.2%)
- e\mu p_T: 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)
Result

Systematic uncertainties

Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- μ p_T scale: 2.9% (0.2%)
- e E_{T} scale: 3.1% (1.1%)
- E_{T}^{miss}: 0.6% (2.2%)
- $e\mu$ p_T: 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)
87 (obs.), 83 ± 9 (SM exp.) events in signal region
(88 − 94 GeV)

Systematic uncertainties
Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- μ p_T scale: 2.9% (0.2%)
- e E_T scale: 3.1% (1.1%)
- E_T^{miss}: 0.6% (2.2%)
- eμ p_T: 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)
Expected limit

\[\mathcal{B}(Z \rightarrow e\mu) < (6.7^{+2.8}_{-2.0}) \cdot 10^{-7} \]

Systematic uncertainties

Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- \(\mu \ p_T \) scale: 2.9% (0.2%)
- \(e \ E_T \) scale: 3.1% (1.1%)
- \(E_T^{\text{miss}} \): 0.6% (2.2%)
- \(e\mu \ p_T \): 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- N(MC events): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)
Result

Expected limit

\[\mathcal{B}(Z \rightarrow e\mu) < \left(6.7^{+2.8}_{-2.0}\right) \cdot 10^{-7} \]

Observed limit

\[\mathcal{B}(Z \rightarrow e\mu) < 7.3 \cdot 10^{-7} \]

Systematic uncertainties

Effect on background (signal) > 1%

- Luminosity: 2.6%
- Pileup: 3.3% (0.8%)
- \(\mu \) \(p_T \) scale: 2.9% (0.2%)
- \(e \) \(E_T \) scale: 3.1% (1.1%)
- \(E_T^{\text{miss}} \): 0.6% (2.2%)
- \(e\mu \) \(p_T \): 0.4% (1.1%)
- PDF: 1.0% (1.0%)
- \(N(\text{MC events}) \): 10.6% (1.2%)
- Normalisation: 6.8% (3.3%)
Outline

1. Introduction
2. Z-Boson
3. Higgs-Boson
 - Introduction
 - Result
 - Interpretation
4. BSM particle
5. Summary

\[M_{\text{e\mu}} = 1.9 \text{ TeV} \]
Introduction

Basic idea

- Lepton flavour violating Higgs decay
- Two studied decays ($H \rightarrow e\tau / H \rightarrow \mu\tau$)
- Four final states ($\mu\tau_h$, $\mu\tau_e$, $e\tau_h$ and $e\tau_\mu$)
Basic idea

- Lepton flavour violating Higgs decay
- Two studied decays ($H \rightarrow e\tau / H \rightarrow \mu\tau$)
- Four final states ($\mu\tau_h$, $\mu\tau_e$, $e\tau_h$ and $e\tau_\mu$)

Analysis key points

- 2016 data set of $35.9\, fb^{-1}$ of proton-proton data at $\sqrt{s} = 13\, TeV$
- Two analysis methods: boosted decision tree (BDT) and cut based (as cross check)
- Derive limit on BR and Yukawa couplings
Introduction

Basic idea

- Lepton flavour violating Higgs decay
- Two studied decays ($H \rightarrow e\tau / H \rightarrow \mu\tau$)
- Four final states ($\mu\tau_h$, $\mu\tau_e$, $e\tau_h$ and $e\tau_\mu$)

Analysis key points

- 2016 data set of 35.9 fb$^{-1}$ of proton-proton data at $\sqrt{s} = 13$ TeV
- Two analysis methods: boosted decision tree (BDT) and cut based (as cross check)
- Derive limit on BR and Yukawa couplings

Event selection

- Isolated lepton triggers (e or μ)
- Split analysis in production channels (n_{Jet} and/or M_{jj})
Processes with prompt leptons (e.g. $t\bar{t}$, Diboson and $H \rightarrow \tau\tau$)

- Estimated from Monte Carlo simulation
- Corrected for known mis-modelling effects

Contribution from misidentified leptons

- Estimated from collision data with inverted isolation
Result for $\mu\tau$

Cut based analysis

- $p_T^\mu > 26$ GeV and $|\eta^\mu| < 2.4$
- $p_T^{\tau_h} > 30$ GeV and $|\eta^{\tau_h}| < 2.3$
- Cut on $M_T (\tau_h)$
Result for $\mu\tau$

Cut based analysis
- $p_T^\mu > 26$ GeV and $|\eta^\mu| < 2.4$
- $p_T^{\tau_h} > 30$ GeV and $|\eta^{\tau_h}| < 2.3$
- Cut on $M_T(\tau_h)$

BDT analysis
- Input variables:
 - p_T^μ, $p_T^{\tau_e}$, M_{Col}, E_T^{miss}, $M_T(\tau_e)$, $\Delta\eta(\mu,\tau_e)$, $\Delta\phi(p_T^\mu,p_T^{\tau_e})$ and $\Delta\phi(p_T^{\tau_e}, E_T^{miss})$
Result for $\ell\tau$

Cut based analysis

- $p_T^\ell > 26$ GeV and $|\eta^\ell| < 2.1$
- $p_T^\tau > 30$ GeV and $|\eta^\tau| < 2.3$
- Cut on $M_T(\tau_h) < 60$ GeV
Result for $e\tau$

Cut based analysis
- $p_T^e > 26$ GeV and $|\eta^e| < 2.1$
- $p_T^{\tau_h} > 30$ GeV and $|\eta^{\tau_h}| < 2.3$
- Cut on $M_T (\tau_h) < 60$ GeV

BDT analysis
- Input variables:
 - p_T^e, $p_T^{\tau_\mu}$, M_{Col}, E_{miss}^T, $M_T (\tau_\mu)$, $\Delta\eta (e, \tau_\mu)$, $\Delta\phi (p_T^e, p_T^{\tau_\mu})$, M_{vis} and $\Delta\phi (p_T^{\tau_\mu}, E_{miss}^T)$
Interpretation for $\mu \tau$

Limits
- Observed and expected limit on $\mathcal{B}(H \rightarrow \mu \tau)$

Graph:
- **μ_{had}:**
 - 0 Jets: 0.51% (0.43%)
 - 1 Jet: 0.53% (0.56%)
 - 2 Jets: 0.56% (0.94%)
 - VBF: 0.51% (0.58%)
- **μ_{VBF}:**
 - 0 Jets: 1.30% (0.83%)
 - 1 Jet: 1.34% (1.19%)
 - 2 Jets: 2.27% (1.98%)
 - VBF: 1.97% (1.62%)
- **$H \rightarrow \mu \tau$:**
 - 0.25% (0.25%)

Observed and expected limit on $\mathcal{B}(H \rightarrow \mu \tau)$
- 35.9 fb^{-1} (13 TeV)
- **CMS Preliminary**

Table:

<table>
<thead>
<tr>
<th>Process</th>
<th>Observed</th>
<th>Median expected</th>
<th>68% expected</th>
<th>95% expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{had}: 0 Jets</td>
<td>0.51%</td>
<td>1.30%</td>
<td>2.27%</td>
<td>4.23%</td>
</tr>
<tr>
<td></td>
<td>0.43%</td>
<td>0.83%</td>
<td>1.98%</td>
<td>3.82%</td>
</tr>
<tr>
<td>μ_{had}: 1 Jet</td>
<td>0.53%</td>
<td>1.34%</td>
<td>2.27%</td>
<td>4.23%</td>
</tr>
<tr>
<td></td>
<td>0.56%</td>
<td>1.19%</td>
<td>1.98%</td>
<td>3.82%</td>
</tr>
<tr>
<td>μ_{had}: 2 Jets</td>
<td>0.56%</td>
<td>2.27%</td>
<td>4.23%</td>
<td>8.46%</td>
</tr>
<tr>
<td></td>
<td>0.94%</td>
<td>1.98%</td>
<td>3.82%</td>
<td>7.64%</td>
</tr>
<tr>
<td>μ_{VBF}: 0 Jets</td>
<td>0.51%</td>
<td>1.97%</td>
<td>3.82%</td>
<td>7.64%</td>
</tr>
<tr>
<td></td>
<td>0.58%</td>
<td>1.62%</td>
<td>3.38%</td>
<td>6.73%</td>
</tr>
<tr>
<td>μ_{VBF}: 1 Jet</td>
<td>0.53%</td>
<td>1.79%</td>
<td>3.58%</td>
<td>7.16%</td>
</tr>
<tr>
<td></td>
<td>0.56%</td>
<td>1.56%</td>
<td>3.24%</td>
<td>6.48%</td>
</tr>
<tr>
<td>μ_{VBF}: 2 Jets</td>
<td>0.56%</td>
<td>2.27%</td>
<td>4.23%</td>
<td>8.46%</td>
</tr>
<tr>
<td></td>
<td>0.94%</td>
<td>1.98%</td>
<td>3.82%</td>
<td>7.64%</td>
</tr>
<tr>
<td>μ_{VBF}: VBF</td>
<td>0.51%</td>
<td>1.97%</td>
<td>3.82%</td>
<td>7.64%</td>
</tr>
<tr>
<td></td>
<td>0.58%</td>
<td>1.62%</td>
<td>3.38%</td>
<td>6.73%</td>
</tr>
<tr>
<td>$H \rightarrow \mu \tau$: 0 Jets</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
</tr>
<tr>
<td></td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
</tr>
</tbody>
</table>
Interpretation for $\mu\tau$

Limits
- Observed and expected limit on $\mathcal{B}(H \rightarrow \mu\tau)$

Reinterpretation
- Treat as LFV Yukawa coupling $Y_{\mu\tau}$
- Limit:
 \[
 \sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 1.43 \cdot 10^{-3}
 \]

Observed and expected limit on $\mathcal{B}(H \rightarrow \mu\tau)$, %

CMS Preliminary

<table>
<thead>
<tr>
<th>Channel</th>
<th>Expected 68%</th>
<th>Median</th>
<th>Expected 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ^+_had, 0 Jets</td>
<td>0.51% (0.43%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^+_had, 1 Jet</td>
<td>0.53% (0.56%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^+_had, 2 Jets</td>
<td>0.56% (0.94%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^-_had, VBF</td>
<td>0.51% (0.58%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^+_τ, 0 Jets</td>
<td>1.30% (0.83%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^+_τ, 1 Jet</td>
<td>1.34% (1.19%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^+_τ, 2 Jets</td>
<td>2.27% (1.98%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu^-\text{had}$, VBF</td>
<td>1.79% (1.62%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **CMS 8TeV**
- CMS Preliminary
- **35.9 fb$^{-1}$ (13 TeV)**
Interpretation for $e\tau$

Limits

- Observed and expected limit on $\mathcal{B}(H \rightarrow e\tau)$
Interpretation for $e\tau$

Reinterpretation

- Treat as LFV Yukawa coupling $Y_{e\tau}$
- Limit:
 \[\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 2.26 \times 10^{-3} \]

Limits

- Observed and expected limit on $\mathcal{B}(H \to e\tau)$
Outline

1. Introduction
2. Z-Boson
3. Higgs-Boson
4. BSM particle
 - Introduction
 - Result
 - RPV SUSY
 - QBH
5. Summary

\[M_{e\mu} = 1.9 \text{ TeV} \]
Introduction

Motivation

- R-parity violating SUSY model (RPV $\tilde{\nu}_\tau$)
- Quantum black holes (QBH)
- Decay to high mass $e\mu$ pairs
Motivation
- R-parity violating SUSY model (RPV $\tilde{\nu}_\tau$)
- Quantum black holes (QBH)
- Decay to high mass $e\mu$ pairs

Analysis key points
- 2015 data set of 2.7 fb^{-1} of proton-proton data at $\sqrt{s} = 13\text{ TeV}$
- Search for high mass resonances
Introduction

Motivation

- R-parity violating SUSY model (RPV $\tilde{\nu}_\tau$)
- Quantum black holes (QBH)
- Decay to high mass $e\mu$ pairs

Analysis key points

- 2015 data set of 2.7 fb^{-1} of proton-proton data at $\sqrt{s} = 13 \text{ TeV}$
- Search for high mass resonances

Event selection

- Dedicated high E_T/p_T identification criteria for electrons/muons
- Final selection efficiency at $M_{\tilde{\nu}_\tau} = 1 \text{ TeV}$: $\sim 65\%$ (similar for QBH)
Mass distribution

Number of events
- Expected: 10379 ± 1557
- Observed: 9608
Mass distribution

Systematic uncertainties
- Luminosity: 2.7%
- Normalisation: 5%
- μ p_T scale: ~ 10%
- Top background shape: ~ 20%
- Total uncertainty:
 - 15% at 200 GeV
 - 31% at 2 TeV

Number of events
- Expected: 10379 ± 1557
- Observed: 9608
Mass distribution

Systematic uncertainties

- Luminosity: 2.7%
- Normalisation: 5%
- μp_T scale: ~10%
- Top background shape: ~20%
- Total uncertainty:
 - 15% at 200 GeV
 - 31% at 2 TeV

Number of events

- Expected: 10379 ± 1557
- Observed: 9608
Introduction RPV

- R-parity violating supersymmetry (RPV SUSY) model
- Resonant sparticle production is allowed
 - Assume $\tilde{\nu}_\tau$ to be the LSP
 - Assume two dominant couplings λ'_{311} (production) and λ_{132} (decay)

- $e\mu$ resonance with narrow width

$$\Gamma_{\text{tot}} = \left(3\lambda'_{311}^2 + 2\lambda_{132}^2\right) \mathcal{M}(\tilde{\nu}_\tau)/16\pi$$

- Three model parameters: λ'_{311}, λ_{132} and $\mathcal{M}(\tilde{\nu}_\tau)$
Exclusion limits

- Excluded cross section \times BR
- Mass limit for $\lambda = 0.01$ of 1.0 TeV
RPV Result

Exclusion limits

- Excluded cross section \(\times \) BR
- Mass limit for \(\lambda = 0.01 \) of 1.0 TeV
- Limit also in the \(M_{\tilde{\nu}_\tau} - \lambda_{311} \)-plane
Quantum black holes (QBH):
- Can be produced in low scale gravity scenarios at the LHC
- Planck scale smaller than a few TeV
- No Hawking radiation (many particle final state)
- Decay into $e + \mu$

Spin-0, colorless, neutral QBH

Model parameters:
- Threshold mass: M_{th}
- Number of extra dimensions: n
- Extra dimension model: Randall-Sundrum (RS) or Arkani-Hamed-Dimopoulos-Dvali (ADD)

Signal shape:
- Threshold of QBH production
- Signal falls for high mass due to PDFs
QBH Result

Exclusion limits
- Excluded cross section \times BR
- Mass threshold limit for $n = 1$ ($n = 6$) of 2.5 TeV (4.5 TeV)
Outline

1. Introduction
2. Z-Boson
3. Higgs-Boson
4. BSM particle
5. Summary

\[M_{e\mu} = 1.9 \text{ TeV} \]
Summary

Z Boson (CMS PAS-EXO-13-005)
- Search for $Z \rightarrow e\mu$ decays
- Limit on the branching ratio $\mathcal{B}(Z \rightarrow e\mu) < 7.3 \cdot 10^{-7}$

H Boson (CMS PAS-HIG-17-001)
- Search for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ decays
- Limit on $\mathcal{B}(H \rightarrow e\tau/\mu\tau)$ of $< 0.61 \%$ / $< 0.25 \%$
- Limit on LFV Yukawa coupling
 - $\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 2.26 \cdot 10^{-3}$
 - $\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 1.43 \cdot 10^{-3}$

BSM particles (CMS PAS-EXO-16-001)
- Search for new high mass particles decaying to $e\mu$
- Limit on RPV: $M_{\tilde{\nu}_\tau} > 1.0$ TeV for $\lambda = 0.01$
- Limit on QBH: $M_{\text{th}} > 4.5$ TeV for $n = 6$

All CMS physics results can be found at [link](#).
Backup
Search for Lepton Flavor Violation in Z decays in pp collisions at sqrt(s)=8 TeV.

Search for lepton flavour violating decays of the Higgs boson to μτ and eτ in proton-proton collisions at \(\sqrt{s} = 13 \) TeV.

Search for high-mass resonances and quantum black holes in the eμ final state in proton-proton collisions at \(\sqrt{s} = 13 \) TeV.
Eventdisplay $r - z$ view
 Tau ID performance

CMS Simulation Preliminary

\[p_T^{\tau_h} > 20 \text{ GeV}, \mid \eta_{\tau_h} \mid < 2.3 \]
13 TeV, 20 pileup at 25ns

Efficiency : Z' (2TeV) → \tau\tau MC
Fake rate : QCD multi-jet MC (20 < p_T < 1000 GeV)

- Cut-based
- MVA-based

Mis-ID probability vs \(\tau_h \) identification efficiency
Peak luminosity (2016)

CMS Peak Luminosity Per Day, pp, 2016, $\sqrt{s} = 13$ TeV

Data included from 2016-04-22 22:48 to 2016-10-27 14:12 UTC

Max. inst. lumi.: 15.30 Hz/nb

Date (UTC)

Peak Delivered Luminosity (Hz/nb)
$Z \rightarrow e\mu \text{ jet } p_T$
Datadriven background estimate

Define regions: Signal (I), background enriched (III) and control (II and IV)

<table>
<thead>
<tr>
<th>Region I</th>
<th>Region II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1^\pm (isolated)</td>
<td>ℓ_1^\pm (isolated)</td>
</tr>
<tr>
<td>ℓ_2^\mp (isolated)</td>
<td>ℓ_2^\pm (isolated)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region III</th>
<th>Region IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1^\pm (isolated)</td>
<td>ℓ_1^\pm (isolated)</td>
</tr>
<tr>
<td>ℓ_2^\mp (non-isolated)</td>
<td>ℓ_2^\pm (non-isolated)</td>
</tr>
</tbody>
</table>

Misidentification rate defined as (with $i = e, \mu, \tau$):

$$f_i = \frac{N_i (\text{region I})}{N_i (\text{region III}) + N_i (\text{region I})}$$

Number of misidentified events in the signal region:

$$N_i (\text{misidentified}) = \frac{f_i}{1 - f_i} N_i (\text{region III})$$
μτ_h channel, 0 Jets

Cut based analysis

BDT analysis

2016, 35.9 fb^{-1} (13 TeV)

CMS Preliminary

μτ_h, 0 jet

Observed

Z→ττ

Z→ee/μμ

tt, t+jets

Diboson

Reducible

SM H→ττ

H→μτ (B=5%)

Bkg. unc.

Obs./Exp.

0.5

1

1.5

Collinear Mass [GeV]

BDT discriminator

0

0.2

0.4

0.6

0.8

1

BDT analysis
Cut based analysis

BDT analysis

\(\mu \tau_e \) channel, 0 Jets

Cut-based analysis

BDT analysis
µτₑ channel, 1 Jets

Cut based analysis

BDT analysis
Cut based analysis

BDT analysis

CMS Preliminary
μτ, 2 jets gg-enriched

2016, 35.9 fb⁻¹ (13 TeV)

Collinear Mass [GeV]

Events/bin

Obs./Exp.

0 0.5 1 1.5

0 100 200 300

Z→ττ
Z→ee/µµ
t¯t+jets
Diboson
Reducible
SM H→ττ
H→µτ (B=5%)

Bkg. unc.

BDT discriminator

0.4
−0.2
0
0.2

Obs./Exp.

0.5 1 1.5

0

−0.4 −0.2 0 0.2

BDT discriminator

CMS Preliminary
μτ, 2 jets gg-enriched

2016, 35.9 fb⁻¹ (13 TeV)

Observed
Z→ττ
Z→ee/µµ
t¯t+jets
Diboson
Reducible
SM H→ττ
H→µτ (B=5%)

Bkg. unc.

τ
τ→Z
Z→µµ/ee
µ
SM H→ττ
(B=5%)

τµ→HUnc.

(13 TeV)

2016, 35.9 fb⁻¹ CMS Preliminary, 2 jets gg-enriched
Cut based analysis

BDT analysis

\(\mu \tau_e\) channel, 2 Jets (gg)
μτ_h channel, 2 Jets (VBF)

Cut based analysis

BDT analysis
$\mu\tau_e$ channel, 2 Jets (VBF)

Cut based analysis

BDT analysis

[Graphs showing distributions of observed and expected events for different mass bins and BDT discriminator values, labeled as CMS Preliminary, 2016, 35.9 fb$^{-1}$ (13 TeV)].
μτ results

Cut based analysis

BDT analysis
eτh channel, 0 Jets

Cut based analysis

BDT analysis

Histograms and Graphs

- **Collinear Mass [GeV]**
 - Observed vs. Expected
 - Events/bin
 - 2016, 35.9 fb\(^{-1}\) (13 TeV)

- **BDT discriminator**
 - 0.6
 - -0.4
 - -0.2
 - 0
 - 0.2
 - Observed vs. Expected

Legend

- **Events/bin**
 - 0
 - 5000
 - 10000
 - 15000
 - 20000
 - 25000
 - 30000

- **Collinear Mass [GeV]**
 - 0
 - 100
 - 200
 - 300

- **BDT discriminator**
 - 0.6
 - -0.4
 - -0.2
 - 0
 - 0.2

Graph Details

- **Labels**
 - Observed
 - Z→ττ
 - Z→ee/µµ
 - tt, t+jets
 - Diboson
 - Reducible
 - SM H→ττ
 - H→eτ (B=5%)
 - Bkg. unc.
$e\tau_\mu$ channel, 0 Jets

Cut based analysis

BDT analysis
eτh channel, 1 Jets

Cut based analysis

BDT analysis
Cut based analysis

BDT analysis

CMS Preliminary

$e\tau_\mu$, 1 jet

2016, 35.9 fb$^{-1}$ (13 TeV)

Obs./Exp. 0.5 1 1.5

Events/bin 0 2000 4000 6000 8000 10000 12000

Observed

$Z\rightarrow\tau\tau$

$Z\rightarrow ee/\mu\mu$

tt, $t\bar{t}$+jets

Diboson

Reducible

SM $H\rightarrow\tau\tau$, WW

$H\rightarrow e\tau$ (B=5%)

Bkg. unc.

Collinear Mass [GeV]

BDT discriminator

0.6

−0.4

−0.2

0

0.2

1

1.5

0

0.5

−0.6

−0.4

−0.2

0

0.2

Bkg. unc.
e\(\tau_h\) channel, 2 Jets (gg)

Cut based analysis

BDT analysis
eτμ channel, 2 Jets (gg)

Cut based analysis

BDT analysis
$e\tau_h$ channel, 2 Jets (VBF)

Cut based analysis

BDT analysis

2016, 35.9 fb$^{-1}$ (13 TeV)

2016, 35.9 fb$^{-1}$ (13 TeV)
e\(\tau\mu\) channel, 2 Jets (VBF)

Cut based analysis

BDT analysis
eτ results

Cut based analysis

![Cut based analysis graph]

BDT analysis

![BDT analysis graph]

h→eτ: Mass Fit
- Observed
- Median expected

68% expected
95% expected

h→eτ: BDT Fit
- Observed
- Median expected

68% expected
95% expected
Systematic uncertainties

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>H → μτ(_e)</th>
<th>H → μτ(_h)</th>
<th>H → eτ(_μ)</th>
<th>H → eτ(_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon trigger/ID/isolation</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>-</td>
</tr>
<tr>
<td>Electron trigger/ID/isolation</td>
<td>2%</td>
<td>-</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Hadronic τ efficiency</td>
<td>-</td>
<td>5%</td>
<td>-</td>
<td>5%</td>
</tr>
<tr>
<td>b-tagging veto</td>
<td>2.0–4.5%</td>
<td>2.0–4.5%</td>
<td>2.0–4.5%</td>
<td>-</td>
</tr>
<tr>
<td>Z → μμ/ee +jets background</td>
<td>10%±5%</td>
<td>-</td>
<td>10%±5%</td>
<td>-</td>
</tr>
<tr>
<td>Z → ττ +jets background</td>
<td>10%±5%</td>
<td>10%±5%</td>
<td>10%±5%</td>
<td>10%±5%</td>
</tr>
<tr>
<td>W + jets background</td>
<td>10%</td>
<td>-</td>
<td>10%</td>
<td>-</td>
</tr>
<tr>
<td>QCD multijet background</td>
<td>30%</td>
<td>-</td>
<td>30%</td>
<td>-</td>
</tr>
<tr>
<td>WW, ZZ background</td>
<td>5%±5%</td>
<td>5%±5%</td>
<td>5%±5%</td>
<td>5%±5%</td>
</tr>
<tr>
<td>tt background</td>
<td>10%±5%</td>
<td>10%±5%</td>
<td>10%±5%</td>
<td>10%±5%</td>
</tr>
<tr>
<td>W + γ background</td>
<td>10%±5%</td>
<td>-</td>
<td>10%±5%</td>
<td>-</td>
</tr>
<tr>
<td>Single top production background</td>
<td>5%±5%</td>
<td>5%±5%</td>
<td>5%±5%</td>
<td>5%±5%</td>
</tr>
<tr>
<td>(μ \rightarrow τ_h) background</td>
<td>-</td>
<td>25%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e (\rightarrow \tau_h) background</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12%</td>
</tr>
<tr>
<td>jet (\rightarrow \tau_h, \mu, e) background</td>
<td>-</td>
<td>30%±10%</td>
<td>-</td>
<td>30%±10%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>3–20%</td>
<td>3–20%</td>
<td>3–20%</td>
<td>3–20%</td>
</tr>
<tr>
<td>Hadronic τ energy scale</td>
<td>-</td>
<td>1.2%</td>
<td>-</td>
<td>1.2%</td>
</tr>
<tr>
<td>e (\rightarrow \tau_h) energy scale</td>
<td>-</td>
<td>1.5%</td>
<td>-</td>
<td>3%</td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>±(σ)</td>
<td>-</td>
<td>±(σ)</td>
<td>±(σ)</td>
</tr>
<tr>
<td>Muon energy scale</td>
<td>0.2%</td>
<td>0.2%</td>
<td>-</td>
<td>0.2%</td>
</tr>
<tr>
<td>Unclustered energy scale</td>
<td>±(σ)</td>
<td>±(σ)</td>
<td>±(σ)</td>
<td>±(σ)</td>
</tr>
<tr>
<td>acceptance scale (GF H)</td>
<td>-3.0 – 2.0%</td>
<td>-3.0 – 2.0%</td>
<td>-3.0 – 2.0%</td>
<td>-3.0 – 2.0%</td>
</tr>
<tr>
<td>acceptance scale (VBF H)</td>
<td>-0.3 – 1.0%</td>
<td>-0.3 – 1.0%</td>
<td>-0.3 – 1.0%</td>
<td>-0.3 – 1.0%</td>
</tr>
<tr>
<td>QCD scale YR4 (GF H)</td>
<td>3.2%</td>
<td>3.2%</td>
<td>3.2%</td>
<td>3.2%</td>
</tr>
<tr>
<td>QCD scale YR4 (VBF H)</td>
<td>2.1%</td>
<td>2.1%</td>
<td>2.1%</td>
<td>2.1%</td>
</tr>
<tr>
<td>acceptance PDF (GF H)</td>
<td>-1.5 – 0.5%</td>
<td>-1.5 – 0.5%</td>
<td>-1.5 – 0.5%</td>
<td>-1.5 – 0.5%</td>
</tr>
<tr>
<td>acceptance PDF (VBF H)</td>
<td>-1.5 – 1.0%</td>
<td>-1.5 – 1.0%</td>
<td>-1.5 – 1.0%</td>
<td>-1.5 – 1.0%</td>
</tr>
<tr>
<td>PDF YR4 (GF H)</td>
<td>3.9%</td>
<td>3.9%</td>
<td>3.9%</td>
<td>3.9%</td>
</tr>
<tr>
<td>PDF YR4 (VBF H)</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Bin-by-bin</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Pile-up</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
</tbody>
</table>
BDT input for $H \rightarrow \mu \tau_h$
BDT input for $H \rightarrow \mu \tau_e$
BDT input for $H \rightarrow e\tau_h$
BDT input for $H \rightarrow e\tau_\mu$
Comparison to other analysis

- **CMS 8 TeV (19.7 fb⁻¹):** PLB 749 (2015) 337
- **CMS 13 TeV (2015, 2.3 fb⁻¹):** HIG-16-005
- **CMS 13 TeV (2016, 35.9 fb⁻¹):** HIG-17-001

- **ATLAS 8 TeV (20.3 fb⁻¹):** EPJC 77 (2017) 70

Best Fit to B(H → μτ), %

- CMS: 0.84 ±0.39 % (-0.37)
- ATLAS: -0.76 ±0.81 % (-0.84)

95% CL Limit on Br(H → μτ), %

- CMS: <1.20 (1.62) %
- ATLAS: <1.51 (0.75) %