
LArSoft/LArLite Integration Report Status 
Chris Jones, Marc Paterno 
 
DRAFT which has not yet been reviewed by Kazu or the LArSoft Project 

Activity to date 
Interviewed	
  Kazu	
  Terao,	
  Wes	
  Ketchum,	
  David	
  Adams,	
  Ryan	
  Grosso,	
  Corey	
  Adams.	
  
Drafted	
  report	
  base	
  on	
  this.	
  	
  
 

Why do people use LArLite? 
For the build mechanism, and development of algorithms 

1. Faster build than when developing in LArSoft. 
2. Smaller installation than needed for developing in LArSoft. 
3. Faster installation with fewer steps than required for LArSoft. 
4. Better stability; LArSoft’s head is updated frequently, leading to breakage of 

user code. 
5. Availability on Ubuntu. 
6. Freedom to commit code to one’s own repository, no need to synchronize 

with the LArSoft community. 

For the event loop driver, doing analysis and developing (testing) 
algorithms 

1. Event loop is simpler, thus faster, than the one in art. 
2. Definition of data products can be experiment-specific. 
3. Existing frequently-used data products in LArLite have a preferred interface to 

those in LArSoft, especially for iteration. 
4. Modification of data products is easier; modified code can be committed to 

one’s own repository without need for coordination between experiments or 
groups. 

5. Integration with PyRoot for analysis or for writing tests is simple. 
 

What is LArLite? 
Build mechanism 
The core of LArLite is a generator for producing a specific directory structure, GNU 
Makefiles and skeleton source files, including the necessary mechanisms to 
generate ROOT dictionaries. The design is such that there is a recommended way of 
combining the generated code with other code generated in the same manner. The 
structure and use of the Makefiles is not enforced in the system, which allows users 
to tailor it to their own personal needs. 

Modular event loop driver 
When many people speak of LArLite they are not referring to the build mechanism 
but instead to a modular event loop driver that is built using that mechanism. 
Algorithms are packaged into modules. The event loop driver reads events in 



sequence and passes the event data from module to module. The event loop driver 
does not have any mechanism for handling the concepts of Run or SubRun. 
 
As part of the infrastructure for the event loop driver there are C++ classes which 
represent frequently-used data products. Some of these data products are designed 
to mirror LArSoft data products while others are experiment-specific. 
 

Recommendations Span 
• How	
  to	
  use	
  LArSoft	
  from	
  LArLite	
  
• How	
  to	
  develop,	
  in	
  LArLite,	
  code	
  that	
  is	
  interoperable	
  with	
  LArSoft	
  
• Suggested	
  changes	
  to	
  LArSoft	
  and	
  art	
  
• Suggested	
  changes	
  to	
  LArLite	
  

Next Steps 
• Discuss	
  recommendations	
  with	
  Kazu	
  and	
  Erica.	
  	
  
• Discuss	
  options	
  with	
  Panagiotis.	
  	
  
• Release	
  full	
  draft	
  for	
  comment	
  and	
  completion.	
  
	
  


