Colour Reconnection and Its Effect on Precise Measurements at the LHC

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics
Lund University
Sölvegatan 14A, SE-223 62 Lund, Sweden

ISMD 2013, Chicago, 17 September 2013
The Structure of an Event

An event consists of many different physics steps, which have to be modelled by event generators:

PDF
ME
MPI
ISR
FSR
BR
CR
Hadr.
Decays
Rescattering
BE
Unknown?
The Density of Particle Production

multiplicities in nondiffractive events (8 TeV LHC)

strings crossing $y = 0$
primary hadrons in $|y| < 0.5$
charged particles in $|y| < 0.5$

String width \sim hadronic width \Rightarrow Overlap factor $\sim 10!$
Reconnection in B decays

Colour operators in B decay \Rightarrow some η_c:

$B \to J/\psi \to \mu^+\mu^-$ good way to find B mesons:
. . . soon confirmed by experiment

$g^* \to c\bar{c} \to J/\psi$ production mechanism in pp ("colour octet")
more complicated to test (at the time, later "confirmed")
Reconnection at SppS

\[\langle p_\perp \rangle(n_{ch}) \text{ sensitive to colour flow.} \]

\[\text{long strings to remnants} \Rightarrow \text{comparable } n_{ch}/\text{interaction} \Rightarrow \langle p_\perp \rangle(n_{ch}) \sim \text{flat.} \]

\[\text{shorter extra strings for each consecutive interaction} \Rightarrow \langle p_\perp \rangle(n_{ch}) \text{ rising.} \]

FIG. 27. Average transverse momentum of charged particles in $|\eta| < 2.5$ as a function of the multiplicity. UA1 data points (Ref. 49) at 900 GeV compared with the model for different assumptions about the nature of the subsequent (nonhardest) interactions. Dashed line, assuming $q\bar{q}$ scatterings only; dotted line, gg scatterings with “maximal” string length; solid line gg scatterings with “minimal” string length.
Interconnection at LEP 2

\[e^+e^- \rightarrow W^+W^- \rightarrow q_1\bar{q}_2 q_3\bar{q}_4 \] reconnection limits \(m_W \) precision!

- **perturbative** \(\langle \delta M_W \rangle \lesssim 5 \text{ MeV} \) : negligible!
 (killed by dampening from off-shell \(W \) propagators)
- **nonperturbative** \(\langle \delta M_W \rangle \sim 40 \text{ MeV} \) : inconclusive.
 (but more extreme models from other authors ruled out)
- **Bose-Einstein** \(\langle \delta M_W \rangle \lesssim 100 \text{ MeV} \) : full effect ruled out.
 (but models with \(\sim 40 \text{ MeV} \) barely acceptable)

Colour rearrangement studied in several models, e.g.

Scenario II: vortex lines.
Analogy: type II superconductor.
Strings can reconnect only if central cores cross.

Scenario I: elongated bags.
Analogy: type I superconductor.
Reconnection proportional to space–time overlap.

In both cases favour reconnections that reduce total string length.

(schematic only; nothing to scale)
Multiple colour charges extracted from beams by MPIs:

Ambiguities from $N_C = 3$ and spatial correlations?
$N_C = \infty$ builds too high remnant charge (forward particle flow)!
Random walk in colour space, with restoring force?
Junction topologies when ≥ 2 valence quarks kicked out!
Reconnection at the LHC

\[\langle p_\perp \rangle (n_{\text{ch}}) \] effect alive and kicking:

Reconnection important also for other generators, e.g. Herwig++
Colour rearrangement models for the LHC

Space–time models too complicated
⇒ simplified (in PYTHIA)

Common aspect: reduce string length
\[\lambda = \sum \ln \left(\frac{m_{ij}^2}{m_0^2} \right) \sim \text{multiplicity} \]

Ingelman, Rathsman: reduce \(\sum m_{ij}^2 \);

Generalized Area Law

In total 12 scenarios in PYTHIA 6, mainly annealing:

- \(P_{\text{reconnect}} = 1 - (1 - \chi)^{n_{\text{MPI}}} \) with \(\chi \) strength parameter.
- Random assignment by \(P_{\text{reconnect}} \) for each string piece.
- Choose new combinations that reduce \(\lambda \) (with restrictions).

PYTHIA 8 still only primitive:
let each MPI either form a separate system, or attach its partons to a higher-\(p_\perp \) MPI where it gives minimal \(\lambda \) increase.

Much room for improvement.
MC: close to pole mass, in the sense of Breit–Wigner mass peak.
\(t, W, Z: c\tau \approx 0.1 \text{ fm} < r_p \).

At the Tevatron: \(m_t = 173.20 \pm 0.51 \pm 0.71 \text{ GeV} = \text{PMAS}(6,1) \)
At the LHC (CMS): \(m_t = 173.54 \pm 0.33 \pm 0.96 \text{ GeV} = 6:m0 \)?
The Mass of Unstable Coloured Particles

MC: close to pole mass, in the sense of Breit–Wigner mass peak.

\(t, W, Z: c\tau \approx 0.1 \text{ fm} < r_p \).

At the Tevatron:

\[m_t = 173.20 \pm 0.51 \pm 0.71 \text{ GeV} = \text{PMAS}(6,1) \]

At the LHC (CMS):

\[m_t = 173.54 \pm 0.33 \pm 0.96 \text{ GeV} = 6:m0 \]

Now severely limited by colour reconnection uncertainty
Studies for the Tevatron.

Green bands: old virtuality-ordered showers.

Blue bands: new p_{\perp}-ordered showers.

In total ± 1.0 GeV, whereof ± 0.7 GeV perturbative, and ± 0.5 GeV nonperturbative.

(M. Sandhoff and P. Z. Skands, FERMILAB-CONF-05-518-T;)
Kinematics dependence of mass determinations

Dependence of Top Mass on Event Kinematics

- First top mass measurement binned in kinematic observables.
- Additional validation for the top mass measurements.
- With the current precision, no mis-modelling effect due to
 - color reconnection, ISR/FSR, b-quark kinematics, difference between pole or MS^~ masses.

E. Yazgan
(Moriond 2013)
Semileptonic top decay.

Find jets with anti-k_\perp,
$R = 0.5$, $p_{\perp \text{min}} = 20$ GeV.

Request $n_{\text{jet}} \geq 4$.

Find two jets closest to m_W.

Kill if $|m_{12} - m_W| > 5$ GeV.

Find third jet closest to m_t.

Kill if $|m_{123} - m_t| > 20$ GeV.

t/W decay after \rightarrow before CR:
$\langle \delta n_{\text{ch}} \rangle = -0.26 \pm 0.09$
$\langle \delta m_t \rangle = +0.060 \pm 0.020$ GeV

t/W decay after \rightarrow no CR:
$\langle \delta n_{\text{ch}} \rangle = +36.44 \pm 0.09$
$\langle \delta m_t \rangle = +0.149 \pm 0.020$ GeV
Transverse boosts ⇒
≈ collective particle velocity.
More common with reconnection.

A. Ortiz Velasquez et al.,
Summary and Outlook

- Reconnection well established, from $B \rightarrow J/\psi$ to $\langle p_\perp \rangle (n_{ch})$.
- Missed chance for clean tests at LEP 2.
- Multitude of algorithms for \textsc{Pythia} 6 \Rightarrow uncertainty band.
- Predict (possibility of) significant effects on m_t.
- To do: develop new reconnection algorithms in Pythia8.
- Want more detailed understanding of space–time picture combined with colour algebra.
- High string density will preclude any definitive answers?
- Breakthrough from new precision differential data?
- Far future: high-luminosity e^+e^- collider?

Addendum: new CMS PAS TOP-13-007, "Study of the underlying event, b-quark fragmentation and hadronization properties in $t\bar{t}$ events" shows colour reconnection impact on underlying activity as function of p_\perp and ϕ.
Summary and Outlook

- Reconnection well established, from $B \rightarrow J/\psi$ to $\langle p_\perp \rangle (n_{\text{ch}})$.
- Missed chance for clean tests at LEP 2.
- Multitude of algorithms for Pythia 6 \Rightarrow uncertainty band.
- Predict (possibility of) significant effects on m_t.
- To do: develop new reconnection algorithms in Pythia 8.
- Want more detailed understanding of space–time picture combined with colour algebra.
- High string density will preclude any definitive answers?
- Breakthrough from new precision differential data?
- Far future: high-luminosity e^+e^- collider?

Addendum: new CMS PAS TOP-13-007, “Study of the underlying event, b-quark fragmentation and hadronization properties in $t\bar{t}$ events” shows colour reconnection impact on underlying activity as function of $p_{\perp t\bar{t}}$ and $\phi_{t\bar{t}}$.
Let’s aim for more than a flying circus . . .