Measurement of anisotropic radial flow in relativistic heavy ion collisions

Yuanfang Wu

In cooperation with: Lin Li and Na Li

Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics (IOPP), Central China Normal University (CCNU), Wuhan 430079, China

1. Motivation
2. Measurements of radial expansion
3. Physics of suggested measure $dy_t/d\phi$
4. Measured y_{t2} and extracted ρ_2
5. Summary

1. Motivation

Elliptic flow:

Coordinate-Space

Momentum-Space

Azimuthal multiplicity distribution:

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(N) \cos(n(\phi - \psi_r)) \\
\phi = \tan^{-1}\left(\frac{p_y}{p_x}\right)
\]

Define elliptic flow:

\[
v_2(N) = \langle \cos(2(\phi - \psi_r)) \rangle
\]

➢ It measures the anisotropy of azimuthal multiplicity distribution!
Radial expansion

3 velocities:
- Average radial expansion (isotropic) velocity (v_r)
- Anisotropic velocity (v_a)
- Thermal velocity

Radial expansion + Elliptic flow

Particle mass splitting of differential elliptic flow at low transverse momentum region.

- Radial velocities are input parameters of hydrodynamic calculations!
Generalized Blast-wave parameterization

Cooper-Frye formula:

\[
E \frac{d^3N}{d^3p_t} \propto \frac{1}{(2\pi)^3} \int p^\mu d\sigma_u(x) f(x, p)
\]

Radial flow:

\[
\rho = \tilde{r}(\rho_0 + \rho_2 \cos(\phi_m))
\]

\[\rho_0: \text{the isotropic radial flow rapidity; } \rho_2: \text{the anisotropic radial flow rapidity}\]

\(\rho_0 \text{ and } \rho_2 \text{ are determined by fitting:}\)

1. Transverse momentum spectrum
2. Elliptic flow

Such extracted parameters are model dependent!
2. Measure of radial expansion

◆ Total transverse momentum in a given azimuthal angle bin:

\[
\langle P_t(\phi_m) \rangle = \frac{1}{N_{\text{event}}} \sum_{j=1}^{N_{\text{event}}} \left(\sum_{i=1}^{N_m} (p_{t,i}^j(\phi_m)) \right) \frac{dP_t}{d\phi}
\]

\(p_{t,i}^j\): transverse momentum of the \(i\)th particle in the \(m\)th angular bin.

\(N_m\): total number of particles in the \(m\)th angular bin.

➢ It contains the information from both kinetic expansion and multiplicity distribution!

◆ Mean transverse momentum in a given azimuthal angle bin:

\[
\langle p_t(\phi_m) \rangle = \frac{1}{N_{\text{event}}} \sum_{j=1}^{N_{\text{event}}} \left(\frac{1}{N_m} \sum_{i=1}^{N_m} (p_{t,i}^j(\phi_m)) \right) \frac{dp_t}{d\phi}
\]

➢ It measures the radial expansion only!
Definitions of various flows:

Azimuthal multiplicity distribution:

\[\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(N) \cos(n(\phi - \psi_r)) \]

Azimuthal total transverse momentum distribution:

\[\frac{dP_t}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(P_t) \cos(n(\phi - \psi_r)) \]

Azimuthal mean transverse momentum distribution:

\[\frac{dp_t}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_t) \cos(n(\phi - \psi_r)) \]
Centrality dependence of various anisotropic flows

AMPT with string melting for Au+Au coll. at 200GeV

- They show similar centrality dependence.
- $v_2(\langle \langle p_t \rangle \rangle)$ is the smallest, $v_2(N)$ is in the middle, and $v_2(P_t)$ is largest, as it counts the anisotropy from both multiplicity and transverse momentum distributions.

Azimuthal distribution of mean transverse momentum can measure the radial expansion.
Suggested measurement: azimuthal dis. of mean transverse rapidity

Similarly, we can define the mean transverse rapidity:

\[
\langle y_t(\phi_m) \rangle = \frac{1}{N_{\text{event}}} \sum_{j=1}^{N_{\text{event}}} \left(\frac{1}{N_m} \sum_{i=1}^{N_m} (y^j_{t,i}(\phi_m)) \right)
\]

It relates to the total radial flow rapidity.

AMPT with string melting for Au+Au coll. at 200GeV

\[
y^j_{t,i} = \ln \left(\frac{m^j_{t,i} + p^j_{t,i}}{m_0} \right)
\]

It is well fitted by:

\[
\langle y_t(\phi) \rangle = y_{t0} + y_{t2} \cos(2\phi)
\]

with

\[
y_{t0} = 1.3371 \pm 0.0001
\]

Isotropic mean transverse rapidity: isotropic expansion + thermal motion

\[
y_{t2} = 0.0334 \pm 0.0002
\]

Anisotropic mean transverse rapidity: anisotropic rapidity.
3. The physics of measured $dy_t/d\phi$

Particle mass dependence of suggested distribution

AMPT with string melting for Au+Au coll. at 200GeV

Thermal motion: **temperature**

- particle mass

At fixed T: **lighter particle,**

- **larger thermal velocity**

<table>
<thead>
<tr>
<th>Mass</th>
<th>Particles</th>
<th>Y_{t0}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protons</td>
<td></td>
</tr>
</tbody>
</table>

- Their isotropic parts are ordered as expected random thermal motion!
Centrality dependence of suggested distribution:

The distributions is almost azimuthal angle independent in central collisions, but dependent in non-central coll.

Large anisotropy in mid-central collisions, and small anisotropy in peripheral collisions.

Consistent with the fact that anisotropic expansion appears in non-central collisions, and is the largest in mid-central collisions!
4. Measured y_{t2} and extracted ρ_2

- **Extracted ρ_2 by blast-wave parameterization:**

 Fitting p_t spectrum of 6 particles

 ![Graphs showing π^+, π^-, K^+, K^-, p, and \bar{p} distributions with fits]

 Fitting differential elliptic flow

 ![Graph showing V_2 vs p_T for $\pi^+\pi^-$, K^+K^-, and $p\bar{p}$ with fits]

 Extracted parameters:

 \[T = 96.1 \pm 1.0 \]

 \[\rho_0 = 0.73 \pm 0.01 \]

 \[\rho_2 = 0.035 \pm 0.003 \]

 Measured: \[y_{t2} = 0.0334 \pm 0.0002 \]

- Extracted anisotropic rapidity parameter is consistent with measured anisotropic part of mean transverse rapidity!
Centrality dependence of extracted ρ_2 and measured y_{t2}

AMPT with string melting for Au+Au coll. at 200GeV

- At each of centrality, the extracted anisotropic radial flow parameter is close to that from measured anisotropic part of mean transverse rapidity.
- They show consistent centrality dependence.

Provides a model independent way to get the anisotropic rapidity!
5. Summary

- We suggest the measurements for the azimuthal distribution of mean transverse rapidity.
- It consists of two parts: isotropic, and anisotropic mean transverse rapidity.
 - Isotropic part: isotropic radial expansion + thermal motion
 Consistent with the mass ordering
 - Anisotropic part: anisotropic radial expansion
 Centrality dependence is consistent with extracted anisotropic radial rapidity
- It provides a model independent way to get anisotropic rapidity. It is helpful for hydrodynamic calculations, and a model independent determination of shear viscosity.