Measurement of Hadron Production in DIS

on behalf of the H1 Collaboration

Hannes Jung (DESY, Univ. Antwerp)

• inclusive charged particle spectra in DIS
• strange particle spectra in DIS
• comparison to pp
Introduction

- measurement of hadron production in DIS constrain
 - at small p_t:
 hadronization parameters, also for strange particles
 - at large p_t:
 parton evolution
- measurement of hadron production in pp constrain
 - hadronization
 - but also multiparton interaction and UE parameters
Charged particle spectra in DIS

- **kinematic range:** $ep \rightarrow e' X$
 - $e : 26.7 \text{ GeV}$; $p : 920 \text{ GeV}$; $\sqrt{s} = 319 \text{ GeV}$
 - $5 < Q^2 < 100 \text{ GeV}$
 - $0.05 < y < 0.6$
 - $0.0001 < x_{bj} < 0.01$

- **tracks** $-2 < \eta < 2.5$, $p_t > 0.150$ (0.5) GeV in lab-frame

- **measurement in hadronic center-of-mass frame:**
 - η^* and p_t^*
 - $\eta^* < 0$: target (p-remnant) hemisphere
 - $\eta^* > 0$: γ - hemisphere
 - central: $0 < \eta^* < 1.5$
 - current: $1.5 < \eta^* < 5$
Charged particle spectra in DIS

- at small p_t^*: ~ flat plateau
 - hadronization → described by MC
- at large p_t^*: rising towards photon (hard scale)
 - parton shower cascade → not described by MC
 - small dependence on parton densities

H1 Coll. EPJC 73 (2013) 2406

Hannes Jung, Hadron production in DIS, ISMD 2013, Chicago
charged particle spectra in DIS

- dependence on hadronization parameters
 - at small p_t^*:
 - hadronization is important: sensitivity to tune
 - at large p_t^*:
 - hadronization plays little role
Charged particle spectra in DIS

- dependence on parton shower model:
 - RAPGAP: virtuality ordered collinear PS (a la PYTHIA/LEPTO)
 - DJANGOH: PS from Color Dipole Model (ARIADNE)
 - HERWIG++: angular ordered collinear PS
 - CASCADE: angular ordered small-x improved CCFM PS

→ for $p_t^* < 1$ GeV
 → small sensitivity on PS (except CASCADE) → sensitive to hadronization

→ for $p_t^* > 1$ GeV
 → collinear parton shower (RAPGAP & HERWIG++) below data
 → Color Dipole Model best
 → small x improved CCFM shower to high
charged particle spectra in bins of Q^2 and x

H1 Coll. EPJC 73 (2013) 2406

- at small $p^*_{t} < 1$ GeV
 - plateau at $\sim 1.6 - 2.0$ particles independent of Q^2
 - plateau size shrinks with increasing Q^2
 - “all” models describe measurements (except CASCADE)
charged particle spectra in bins of Q^2 and x

- at large $p^*_t > 1$ GeV
 - models with collinear parton shower fail at small x and small Q^2, while become better/good at large Q^2
 - small x improved CCFM parton shower is good at small x and small Q^2, while fails at larger Q^2
- Color Dipole Model is reasonable over full range
charged particle spectra as fct of p_{t}^{*} in bins of Q^{2} and x

- spectra fall over 4-5 orders of magnitude at small x
- particle spectra as fct of p_{t}^{*} give constraints on hardness of partons in parton shower
 - collinear shower models generate too soft spectra compared to measurement
 - small x improved (CCFM) shower generates hard spectrum → closer to measurement at large p_{t}^{*}
- Color Dipole shower is best

Hannes Jung, Hadron production in DIS, ISMD 2013, Chicago
charged particle spectra in 2 regions of \(\eta^* \)

- **\(0 < \eta^* < 1.5 \):**
 - region sensitive to higher order radiation (parton shower)
 -> data not described by collinear parton shower models

- **\(1.5 < \eta^* < 5 \):**
 - region sensitive to hard scattering
 -> at large \(p_t^* \) → data significantly larger than collinear shower predictions
K^0_s production in DIS

- mechanisms for strange particle production in DIS:

- dominant production mechanism is hadronization at small p_t!
- role of quark mass in hadronization process!
- phase space: $e p \rightarrow e' K^0_s X$ at $\sqrt{s} = 319$ GeV
 - $7 < Q^2 < 100$ GeV
 - $0.1 < y < 0.6$
 - $0.5 < p_t < 3.5$
 - $-1.3 < \eta < 1.3$

\rightarrow measure: $K^0_s \rightarrow \pi^+ \pi^-$
K^0_s cross sections

- K^0_s cross section as function of $(Q^2$ and) η_K reasonably well described in shape
- small normalization difference with $\lambda_s = 0.286$ (LEP–ALEPH tune) strangeness suppression factor

- K^0_s cross section as function of p_T is not well described by simulation: independent of λ_s
K^0_s to inclusive charged particle ratio

- ratio as function of η
 - reasonably well described in shape
 - well described in rate for $\lambda_s = 0.286$

- ratio as function of p_T
 - NOT well described in shape independent of λ_s

- ratio of K^0_s production to π production increases sensitivity to strangeness suppression, since some model uncertainties cancel
Λ baryon production in DIS at large Q^2

- phase space:
 - $145 < Q^2 < 20000 \text{ GeV}$
 - $0.2 < y < 0.6$
 - $p_t > 0.3 \text{ GeV}$
 - $-1.5 < \eta < 1.5$

→ reasonable description of data with models
→ some dependence on λ_8
\(\Lambda \) to DIS ratio

- \(\Lambda_s \) production shows similar \(Q^2 \) and \(x \) dependence as inclusive DIS
 - shape reasonably well reproduced by models
 - rate is sensitive to \(\lambda_s \)
- different \(\lambda_s (=0.220) \) as compared to small \(Q^2 \) and \(K^0_s \) (\(\lambda_s =0.286 \)) preferred
strange/charged particle ratio in UE in pp

- $d\eta/d\eta$ for inclusive particle production is described by special min-bias tune
 - models are off by 30% in K^0_s and 50% in Λ production
 - more than in DIS!

- measurement of strangeness production in transverse region to jets in pp:
 - small deficit in K^0_s but significant deficit in Λ production \rightarrow tune!
 - transverse region is sensitive to multiparton interactions but also to parton shower
Conclusion

- charged particle spectra in DIS give important information of
 - hadronization at small p_t
 - inclusive spectra at small p_t are reasonably well described with hadronization parameters obtained from LEP
 - higher order contributions (parton shower) at larger p_t
 - collinear parton shower models fail to describe “large” p_t tail
 - small x improved parton shower comes closer to data at small x
- strange particle production in DIS:
 - spectra of K^0_s are reasonably well described using strangeness suppression λ_s factor from LEP
 - spectra for Λ prefers smaller λ_s than for K^0_s
- DIS spectra provide a crucial test for hadronization and parton shower models: → no contribution from multiparton interactions!
 - note: inclusive particle spectra and strangeness production in pp involve more components....