Boosted Heavy Particles and Jet Substructure with the CMS Detector
Introduction

Boosted regime: **classical selection methods fail.**

- multiple, **well separated jets** from W, Higgs or top hadronic decays
- typical jet collection: **AK5** (anti-k_T, R=0.5)
- decay products from heavy particles merged into large fat-jets
- jet substructure provides fundamental selection tools (top-tagging, W-tagging...)
- typically, **larger jet collections**: **CA8** (Cambridge-Aachen, R=0.8) or **CA15**
Substructure Techniques
W-Tagging
[CMS-PAS-JME-13-006]

Based on jet mass pruning (Ellis, Vermillion, Walsh [arXiv:0903.5081], [CMS-PAS-SMP-12-019]).

Starting with CA8 jets.

Re-cluster jet and apply requirements when merging clusters \(i\) and \(j\) into cluster \(p\).

Veto soft and large angle re-combinations, removing softer component if:

\[
\begin{align*}
\text{(1)} & \quad \min(p_T^i, p_T^j)/p_T^p < 0.1 \\
\text{(2)} & \quad \Delta R_{ij} > 0.5 \frac{m_{\text{orig}}}{p_T^{\text{orig}}}
\end{align*}
\]

W-tagging:
- 2 pruned subjets
- pruned jet mass \([60, 100] \text{ GeV}\)

Signal: resonance (600 GeV) → WW
QCD background
Pruning can be combined with additional observables:

- mass-drop μ
- N-subjettiness τ_N: τ_2/τ_1 used for W-tagging
- also examined: Qjet volatility Γ_{QJet}
- generalized energy correlation function C_2^β

N-subjettiness shows the best single discriminating power.

Observables are correlated: moderate improvement with multivariate combination using TMVA.

Efficiency: $H \rightarrow WW$, $m_H = 600$ GeV

Mistag: QCD
W-Tagging: MC vs Data
[CMS-PAS-JME-13-006]

- Detailed data/MC comparisons for all substructure observables
- Different topologies and generators considered

ttbar
- **powheg**
- **mc@nlo**

Sensitive to: efficiency

leptonic W+jets
- **Pythia6**
- **Herwig**

Mistag
- pT [250, 350] GeV

di-jets
- **MG+Pythia6**
- **Herwig**
- **Pythia8**

Mistag
- pT [400, 600] GeV

general good agreement, more observables in the backup
Scale factors (SF) to correct for residual discrepancies.

Extract:

- **W-jet mass scale (peak position):**
 - Data: 84.5±0.4 GeV
 - MC: 83.4±0.4 GeV

- **W-jet mass resolution:**
 - Data: 8.7±0.6 GeV
 - MC: 7.5±0.4 GeV

- **data/MC correction for W-tagging efficiency (SF):**
 - 0.905 ± 0.08
 (operating point: \(m_{\text{pruned}}\) cut + \(\tau_2/\tau_1 < 0.5\))
Based on JHU top-tagger (Kaplan et al [PRL 101 (2008) 142001]):

- start with CA8 jets
- reverse clustering sequence and examine clusters pairwise
- clusters are split if:
 \[\Delta R > 0.4 - 0.0004 \ p_T^C \]
 \(p_T^C \) is the parent cluster \(p_T \)
- low \(p_T \) clusters removed if:
 \[p_T < 0.05 \ p_T^{jet} \]

Top-tagger requirements:

- \(140 < m_{jet} < 250 \ \text{GeV} \)
- \(N_{subjets} \geq 3 \)
- Min pairwise mass > 50 GeV

ROC Curves

top-mistag (QCD) vs efficiency in simulation
Performance
[CMS-PAS-B2G-12-005]

μ+jets: semileptonic ttbar

![Histogram of Top Candidate Jet Mass](image1)

- **Data**
- t\(\bar{t}\)
- W+jets
- Z+jets
- Single Top

QCD

Mistag rate can be measured from data, using **anti-tag method**:
- two high-\(p_T\) jets, \(p_T > 400\) GeV
- anti-tag one jet, inverting min pairwise mass requirement
- top-tag of other jet is a mistag

![Histogram of Minimum Pairwise Mass](image2)

- **Data**
- t\(\bar{t}\)
- W+jets
- Z+jets
- Single Top

top-tagging data/MC scale factor derived from selection efficiency of hadronic top candidate: 0.93±0.04
B-Tagging in Boosted Topologies
[CMS-PAS-BTV-13-001]

- B-tagging at CMS traditionally developed on isolated AK5 jets, mostly suitable for the non-boosted regime.

- First study at LHC dedicated to b-tagging in the boosted regime. Benchmark topologies:
 - Boosted top, hadronic decay: selected using HEPTopTagger [JHEP 1010 (2010) 078], CA15 jet collection
 - Boosted Higgs → bb: studies based on pruned CA8 jets

- CSV developed on AK5 jets: currently no dedicated re-training for the boosted regime.
Two scenarios considered:

- **subjet CSV:**
 - CSV b-tagger applied to subjets (2 b-tags for Higgs-tagging, \(\geq 1 \) for top-tagging)

- **fat-jet CSV:**
 - CSV b-tagger applied to the Higgs/top candidate fat-jet

Subjet b-tagging generally performs better: chosen as **default technique**

Fat-jet b-tagging suitable at **very high** \(p_T \)

where subjets start to merge
Control samples
Boosted top:

- $\mu+\text{jets}$, semileptonic $\text{t}\overline{\text{t}}\text{bar}$

Boosted Higgs: challenging definition of the control sample

- similar topology: **gluon splitting jets**, two closeby b's

e.g. Top channel, HEPTopTagger subjets

- Good data/MC agreement for b-tagging observables.
- All observables cross-checked (backup).

e.g. subjets of gluon splitting CA8 fat-jets

- SF~1, compatibly with SF for standard b-tagging in the non-boosted regime, for both channels.
- Nothing pathological in the boosted regime.
Pile-Up Jet-ID
[CMS-PAS-JME-13-005]

- Traditional PU subtraction: subtract charged particles not pointing to the primary vertex.

- PU Jet-ID:
 - exploit also **non-tracking quantities** (jet shape) to extend PU rejection outside of the tracking acceptance
 - **multivariate discriminant**

Z ($\rightarrow\mu\mu$) + jets events

<table>
<thead>
<tr>
<th>$\mu\mu$ + jets events</th>
<th>PU jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 <</td>
<td>\eta</td>
</tr>
</tbody>
</table>

\[
\langle \Delta R^2 \rangle = \frac{\sum_i \Delta R^2_{iT} p^2_{Ti}}{\sum_i p^2_{Ti}}
\]

- **Example non-tracking observable:** radial distribution of Particle-Flow jet-constituents

- Known residual discrepancy due to out-of-time pile-up simulation
Performance:
- tag-and-probe method from $Z \rightarrow \mu\mu$ + jets events, where probe is jet recoiling against Z
- data/MC agreement within 10%, corrected using SF

Several applications:
- e.g. extensions of jet vetos to low p_T (Higgs searches)
Quark-Gluon Discrimination
[CMS-PAS-JME-13-002]

Quark/gluon discrimination: similarly to PU Jet-ID, combine discriminating variables in likelihood

Variables:

- **multiplicity:**
 - charged, neutral, total

- **spread:**
 - $\eta-\phi$ spread
 - major $\eta-\phi$ matrix axes σ_1
 - minor $\eta-\phi$ matrix axes σ_2

- **energy sharing:**
 - hardest candidate off-centering/energy

\[p_T D = \frac{\sqrt{\sum_i p_{T,i}^2}}{\sum_i p_{T,i}} \]

combined in likelihood

Quark and gluon have different colour interaction:

- quark jet
- gluon jet

+ multiplicity
+ width
more homogeneous energy sharing
Quark-Gluon Discrimination
[CMS-PAS-JME-13-002]

- Quark/gluon discrimination: similarly to PU Jet-ID, combine discriminating variables in likelihood

- Quark and gluon have different colour interaction:

 - Quark jet
 - Gluon jet

 + multiplicity
 + width
 more homogeneous energy sharing

Single-variable and combined likelihood discrimination power
Quark-Gluon Discrimination
[CMS-PAS-JME-13-002]

- Validation in two different samples:
 - **Z+jets**: quark enriched
 - **di-jets**: gluon enriched

- Overall good data/MC agreement. Some discrepancy at low p_T in di-jets, probably due to gluon fragmentation mismodeling. Covered by systematics.

- Useful tool for several searches:
 - many channels with jets are **flavor specific**
 - pioneer analyses at CMS:
 - Higgs→ZZ→2l2q
 [JHEP 04 (2012) 036]
 - VBF Higgs→bb
 [CMS-PAS-HIG-13-011]
Searches Using Substructure
Resonances \rightarrow ttbar All-Hadronic Final State

Flagship for boosted searches for new physics.
Sensitive to several models. Considered:
- extra dimensions, RS gluon
- extended gauge, Z'
 - narrow $\Gamma/m=0.01$
 - broad $\Gamma/m=0.1$

Selection:
- 2 back-to-back high p_T jets
- both top-tagged

exclusion limits from combination with semi-leptonic channel
exclusion up to 2.7 TeV depending on the channel

High-purity version of the analysis underway:
reduce QCD with combination top-tagging+subjet b-tagging
Vector-like heavy quarks predicted by several theories:
- little/composite Higgs models
- extra dimensions
Solution to the hierarchy problem.

Signal:
- pair-produced B' with charge $-1/3$
- decay modes: $B'\rightarrow tW, bZ, bH$
- all branching fractions

Selection:
- single muon or electron
- substructure used in event categories based on number of V-tags ($V=W/Z/H$):
 - CA8 jet, $p_T \geq 200$ GeV
 - mass drop $\mu < 0.4$
 - 2 pruned subjets
 - $m_{\text{pruned}} [50,150]$ GeV

final limit up to 732 GeV
Top Partners
[CMS-PAS-B2G-12-012 and 015]

- [CMS-PAS-B2G-12-012] Signal:
 - pair-produced \(T' \) with charge 5/3
 - BR 100% \(T' \rightarrow tW \)

- Selection:
 - two same sign leptons
 - top-tagging
 - \(W \)-tagging \((m_{\text{pruned}} \ [60,130] \text{ GeV}) \)

- [CMS-PAS-B2G-12-015] Signal:
 - pair-produced \(T' \) with charge 2/3
 - decay modes: \(T' \rightarrow tH, tZ, bW \)
 - all branching fractions

- Two final states:
 - multilepton: counting experiment, no substructure
 - single lepton: multivariate analysis, number of \(W \)- and top-tags enter the BDT discriminant.

observed limit 770 GeV

final combined limit up to 782 GeV
High Mass Dibosons
[CMS-PAS-EXO-12-021/024]

Predicted by several models. Here considered:

- **bulk graviton** production: $G_{\text{bulk}} \rightarrow WW \rightarrow l + \text{jet} + \text{MET}$

- **RS graviton**, W heavy partner W':
 $G_{\text{RS}} \rightarrow WW/ZZ$, $W' \rightarrow WZ$
 all-hadronic decay

W-tagging:
- $m_{\text{pruned}} [65,105] \text{GeV}$
- N-subjettiness:
 - high-purity $\tau_2/\tau_1 < 0.5$
 - low-purity $0.5 < \tau_2/\tau_1 < 0.75$

- double W/Z-tagging:
 $m_{\text{pruned}} [70,100] \text{GeV}$, same τ_2/τ_1 cuts as above

- $G_{\text{bulk}} \sigma \times \text{BR}_{WW}$ limits between 70 fb and 3 fb
- $G_{\text{RS}} \rightarrow WW$ exclusion: [1.00, 1.59] TeV
- $G_{\text{RS}} \rightarrow ZZ$ exclusion: [1.00, 1.17] TeV
- $W' \rightarrow WZ$ exclusion: up to 1.73 TeV
Substructure techniques

- major developments recently: subjet b-tagging, W-tagging, pile-up jet-ID, gluon/quark discriminator, ...
- **new results on top-tagging expected soon**
- extensive data/MC comparisons: generally good agreement

Searches:

- increased number of analyses using substructure, beyond typical ttbar resonance searches
- **searches exploiting powerful new tools** (subjet b-tagging, new top-taggers, ...) **expected before the end of the year**
Substructure techniques

- major developments recently: subjet b-tagging, W-tagging, pile-up jet-ID, gluon/quark discriminator, …
- new results on top-tagging expected soon
- extensive data/MC comparisons: generally good agreement

Searches:

- increased number of analyses using substructure, beyond typical ttbar resonance searches
- searches exploiting powerful new tools (subjet b-tagging, new top-taggers, …) expected before the end of the year
Additional Slides
W-Tagging: Additional Observables

Pruning can be combined with additional observables:

- mass-drop
Pruning can be combined with additional observables:

- **mass-drop**

 \[
 \mu = \frac{m_1}{m_{\text{jet}}}
 \]

 \(m_1\) is the highest mass pruned subjet
Pruning can be combined with additional observables:

- **mass-drop**
- N-subjettiness $\tau_N : \tau_2 / \tau_1$ used for W-tagging

probability that jet is composed by N subjets

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \}$$

$$d_0 = \sum_k p_{T,k} R_0, \text{ and } R_0 \text{ is the original jet radius}$$
Pruning can be combined with additional observables:

- **mass-drop**
- N-subjettiness $\tau_N: \tau_2/\tau_1$ used for W-tagging
- also examined: Qjet volatility Γ_{QJet}, generalized energy correlation function C_2^β
Pruning can be combined with additional observables:

- **mass-drop**
- **N-subjettiness** $\tau_N : \tau_2/\tau_1$ used for W-tagging
- **Qjet volatility** Γ_{QJet}

$$\text{RMS (mass jet trees)} / m_{\text{jet}}$$

where a jet is interpreted as a distribution of trees based on its clustering sequence
Pruning can be combined with additional observables:

- **mass-drop**
- N-subjettiness $\tau_N = \tau_2 / \tau_1$ used for W-tagging
- Qjet volatility Γ_{QJet}
- generalized energy correlation function C_2^β

$$C_2^\beta = \frac{\sum_{i,j,k} p_T^i p_T^j p_T^k (R_{ij} R_{ik} R_{jk})^\beta \sum_i p_T^i}{(\sum_{i,j} p_T^i p_T^j (R_{ij})^\beta)^2}$$

based on momentum and pair-wise angles of particles within the jet
B-Quark Signatures

Life-time b-hadron \rightarrow jets with:
- secondary vertex
- tracks with large impact parameter

Large mass, ~ 5 GeV

Fragmentation function:
- high p_T of the b-hadron relatively to jet p_T

B-decay produces often leptons: soft muon or electron within jet

Several taggers implemented at CMS. Boosted studies based on the Combined Secondary Vertex CSV tagger:
- likelihood ratio combination of secondary vertex + single track information;
- currently the best tagger in CMS, improvements ongoing.

b-tagging algorithms ROC curves
[JINST 8 (2013) P04013]
B-Tagging at CMS

- **jet-tracks association**: static cone
 \[\Delta R(\text{tracks}, \text{jet}) < 0.3 \]

- **OBSERVABLES**
 - apply tight selection on tracks, mainly for pile-up rejection
 - determine b-tagging observables

- **DISCRIMINATORS**
 - calculate b-tagging discriminators
 - several operating points defined for taggers, selecting different regions of purity/efficiency:
 - loose \(L \); 10% misidentification from light quarks/gluons
 - medium \(M \); 1% misidentification from light quarks/gluons
 - tight \(T \); 0.1% misidentification from light quarks/gluons
B-Tagging Algorithms

- Boosted studies based on the Combined Secondary Vertex CSV tagger:
 - likelihood ratio combination of secondary vertex + single track information;
 - currently the best tagger in CMS, improvements ongoing.

- For performance measurements used also Jet-Probability JP tagger:
 - likelihood estimate of the probability that the jet-tracks come from the PV, based on the IP significance of all jet-tracks;
 - calibrated on data from tracks with negative IP.
Based on **CA8 jet collection**: boosted regime for $p_T > 300$ GeV.

- Signal: $B' \rightarrow bH$ pair production. B-tagging studied on $H \rightarrow bb$.

- Inclusive **mistag** from QCD and mistags from hadronically-decaying $W/Z/top$.

- Subjet b-tagging based on pruned subjets:
 - cut on **pruned jet mass** can be combined with b-tagging requirement (see next slides).
Top Channel

- Based on CA15 collection, default for HEPTopTagger.

- Large cone-size allows to reach lower p_T's (~200GeV) without switching from merged-top to unmerged top selection.

- Signal: $T' \rightarrow tH$ pair production. Consistency of the results checked also on SM ttbar production.

- Inclusive mistag from QCD.

- HEPTopTagger forces 3 filtered subjets: used for subjet b-tagging.
B-Tagging Performance

Higgs channel

Subjet b-tagging performs better

Fat-jet **b-tagging** suitable at very high p_T

Top channel

Overall **subjet b-tagging** performs better
Tagging Performance

Higgs channel

Higgs-tagging = double b-tagging + 75 < m_{jet} < 135 GeV

Top channel

QCD mistag rate reduced up to a factor 10 with minor loss of efficiency
Challenging definition of the control sample. Similar topology: **gluon splitting jets**, two closeby b's clustered in the same fat-jet.

Event selection:
- 1 CA8 jet, $p_T > 400$ GeV, $|\eta|<2.4$;
- $\Delta R(\text{subjets}) > m_{\text{jet}}/p_T$: remove infrared unsafe configurations;
- MC samples: inclusive and muon-enriched QCD, $tt, Z\to qq$.

Muon-tag to b-enrich subjets sample: require muon with $p_T > 5$ GeV within subjet cone.

Sample of CA8 fat-jets enriched in gluon splitting, requiring both subjets to be muon-tagged: **Higgs-like sample**.
ttbar semi-leptonic decays.

- Leptonic decay:
 - isolated muon;
 - 1 standard b-tag.

- Hadronic decay selected using HEPTopTagger.

- MC samples: ttbar + all SM backgrounds (single-top, Z/W+jets).
Lifetime Tagger Method

Method based on Jet-Probability b-tagger. Advantage:
- JP discriminant can be defined for most jets (>90%);
- calibrated on data.

Template fit to JP discriminant, before and after applying CSV. Discriminant shape from MC, while relative flavor fractions are free parameters.

Tagging efficiency in data given by (C_b is fraction of jets for which JP computable):

$$\epsilon_b^{\text{tag}} = \frac{C_b \cdot f_b^{\text{tag}} \cdot N_{\text{data}}^{\text{tag}}}{f_b^{\text{before tag}} \cdot N_{\text{data}}^{\text{before tag}}}$$
LT method applied to individual muon-tagged subjets of CA8 fat jets (w/ and w/o the companion subjet b-tagged).

Very good agreement with the standard scale factors.

Results for the loose operating point of CSV.
Mistag Scale Factor

- Measurement of \(\text{mistag rate \ SF} \) for CA8 subjets based on negative taggers, which use tracks with negative impact parameter.
- Very good agreement with the standard scale factors.
Flavor Tag Consistency Method

- Method based on distribution of number of b-tags for the 3 subjets of CA15 HEPTopTagged fat-jet: expected distribution fitted to data, with scale factors as free parameters.

- Expected number n of tags for ttbar signal can be expressed as:

$$\langle N_n \rangle = \mathcal{L} \cdot \sigma_{t\bar{t}} \cdot \varepsilon \cdot \sum_{i,j,k} F_{ijk} \sum_{i'+j'+k' = n} [C_{i'}^{i'} \varepsilon_b^{i'} (1 - \varepsilon_b)^{(i-i')} C_{j'}^{j'} \varepsilon_c^{j'} (1 - \varepsilon_c)^{(j-j')} C_{k'}^{k'} \varepsilon_l^{k'} (1 - \varepsilon_l)^{(k-k')}]$$

- ε_b, ε_c, ε_l are the tagging efficiencies;
- C^a_b are the binomial coefficients;
- F_{ijk} are the fractions of events with i b-subjets, j c-subjets and k light-subjets: taken from MC.
- backgrounds included in the fit.
Fit Modalities

2 parameters fit:
- σ_{tt}, SF$_{b}$ are free parameters.
- Fixed SF$_{c} = $ SF$_{b}$ and fixed SF$_{light}$ to SF$_{light}$ for standard b-tagging on AK5 jets.

3 parameters fit:
- σ_{tt}, SF$_{b}$ and SF$_{light}$ are free parameters. Fixed SF$_{c} = $ SF$_{b}$.

Excellent data/MC agreement after fit of subjet b-tag multiplicity.

Post-fit distribution
Measured S_{b} for boosted top subjets are in agreement with standard S_{b} for AK5 jets.

No significant deviation at high top-p_T of the measured S_{b}.

Mistag S_{light} are in agreement with standard S_{light} for AK5 jets.

<table>
<thead>
<tr>
<th>SF$_b$ for non-boosted jets</th>
<th>CSVL</th>
<th>CSVM</th>
<th>CSVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{b} for HEPTopTagger subjets</td>
<td>1.010±0.013</td>
<td>0.970±0.013</td>
<td>0.950±0.015</td>
</tr>
<tr>
<td>S_{b} for HEPTopTagger subjets</td>
<td>1.003±0.026</td>
<td>0.979±0.023</td>
<td>0.960±0.036</td>
</tr>
<tr>
<td>$p_T \geq 350$ GeV/c</td>
<td>—</td>
<td>0.978$^{+0.023}_{-0.023}$</td>
<td>—</td>
</tr>
<tr>
<td>$p_T \geq 450$ GeV/c</td>
<td>—</td>
<td>0.993$^{+0.034}_{-0.034}$</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SF$_{\text{light}}$ for non-boosted jets</th>
<th>CSVL</th>
<th>CSVM</th>
<th>CSVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{light} for HEPTopTagger subjets</td>
<td>1.080$^{+0.063}_{-0.072}$</td>
<td>1.136$^{+0.090}_{-0.110}$</td>
<td>1.088$^{+0.039}_{-0.086}$</td>
</tr>
<tr>
<td>S_{light} for HEPTopTagger subjets</td>
<td>1.185±0.080</td>
<td>1.580±0.47</td>
<td>—</td>
</tr>
</tbody>
</table>

pT dependence
Track Sharing

- Cross-check of sharing of tracks selected for b-tagging between subjets.
- Consider tracks in a cone of $\Delta R < 0.3$ around subjet axis (as used by CSV).

- Track-sharing increases with p_T of the fat-jet. At very high boost, the level of track sharing becomes significantly large. One solution is to switch to fat-jet b tagging.
Mistag SF

- Use tracks with negative IP or SV with negative decay length to define a negative tagger for each tagger.
- Scale factor for mistag obtained according to:

\[SF_{\text{mistag}} = SF_{\text{neg tag}} \cdot \frac{R_{\text{data}}}{R_{\text{MC}}} \]

given by:
B-tagging Observables

- Checking data/Monte Carlo agreement for b-tagging quantities.

 Presentation ordering:

 - Top channel validation: HEPTopTagger Subjets
 - Higgs channel validation: Multijet sample (CA8 jets)
 - Higgs channel validation: Multijet sample (CA8 muon-tagged subjets)
 - Higgs channel validation: Multijet sample (double muon-tagged CA8 jets)
3D Impact Parameter
Secondary Vertex Multiplicity

CMS Preliminary, 19.8 fb$^{-1}$ at $\sqrt{s} = 8$ TeV

μ+jets sample (HEPTopTagger subjets)

- Data
- b quark
- c quark
- uds quark or gluon

Multijet sample (CA8 jets)

- Data
- b quark
- c quark
- uds quark or gluon
- t\bar{t}
- Z→q\bar{q}

Multijet sample (Muon-tagged CA8 subjets)

- Data
- b quark
- c quark
- uds quark or gluon
- t\bar{t}
- Z→q\bar{q}

Multijet sample (Double-muon-tagged CA8 jets)

- Data
- b quark
- c quark
- uds quark or gluon
- t\bar{t}
- Z→q\bar{q}
SV Flight Distance Significance
Secondary Vertex Mass
Secondary Vertex Mass

Overall good data/Monte Carlo agreement, at the same level as standard b-tagging
Vector-like heavy quarks are part of several theories:

- little/composite Higgs models
- extra dimensions

Solution to the hierarchy problem.

Signal:

- pair-produced T' with charge 5/3
- BR 100% $T' \rightarrow tW$

Selection:

- two same sign leptons
- top-tagging
- W-tagging ($m_{\text{pruned}} [60,130] \text{ GeV}$)

Limits from event yields.

reconstruction of T' mass from all channels
Vector-like heavy quarks are part of several theories:
- little/composite Higgs models
- extra dimensions

Solution to the hierarchy problem.

Signal:
- pair-produced \(T' \) with charge \(5/3 \)
- BR 100%

Selection:
- two same sign leptons
- top-tagging
- \(W \)-tagging

Limits from event yields.
- observed limit 770 GeV

reconstruction of \(T' \) mass from all channels
T'\(2/3\) Top Partners [CMS-PAS-B2G-12-015]

Signal:
- pair-produced T' with charge 2/3
- decay modes: T'\(\rightarrow tH, tZ, bW\)
- all possible branching fractions

Combination of two analysis strategies:

- **Multivariate analysis, single lepton:**
 - two event categories: with or without \(W\)-tag
 - top-tagging applied
 - relevant observables combined in BDT:
 - multiplicity/\(p_T\) of reconstructed objects (lepton, jets, tagged jets...)
 - \(N\) of \(b\)-, \(W\)- and top-tags

- **Counting experiment, multilepton channel. No substructure.**

BDT discriminant, single \(\mu\) channel

final combined limit up to 782 GeV
B' -1/3 Bottom Partners

[CMS-PAS-B2G-12-019]

Signal:
- pair-produced B' with charge $-1/3$
- decay modes: $B' \rightarrow tW, bZ, bH$
- all possible branching fractions

Selection:
- single muon or electron
- ≥ 4 AK5 jets, ≥ 1 b-tagged
- event categories based on number of V-tags ($V=W/Z/H$):
 - CA8 jet, $p_T \geq 200$ GeV
 - mass drop $\mu < 0.4$
 - 2 pruned subjets
 - $m_{\text{pruned}} [50,150]$ GeV

Limits based on S_T distribution:

$$S_T = p_T^{\text{lept}} + p_T^{\text{miss}} + \sum p_T^{\text{jets}}$$

S_T distribution, for 1 V-tag category
Predicted by several models. Here considered:

- **bulk graviton production:** $G_{\text{bulk}} \rightarrow WW \rightarrow l + \text{jet} + \text{MET}$

- **RS graviton, W heavy partner W'**

 $G_{\text{RS}} \rightarrow WW/ZZ, W' \rightarrow WZ$

 all-hadronic decay

- **W-tagging:**
 - $m_{\text{pruned}} [65,105] \text{GeV}$
 - N-subjettiness:
 - high-purity $\tau_2/\tau_1 < 0.5$
 - low-purity $0.5 < \tau_2/\tau_1 < 0.75$

- **double W/Z-tagging:**
 - $m_{\text{pruned}} [70,100] \text{GeV}$, same τ_2/τ_1 cuts as above
High Mass Dibosons
[CMS-PAS-EXO-12-021/024]

- $G_{\text{bulk}} \times \text{BR}_{WW}$ limits between 70fb and 3fb
- $G_{RS} \rightarrow WW$ excluded between [1.00, 1.59] TeV
- $G_{RS} \rightarrow ZZ$ excluded between [1.00, 1.17] TeV
- $W' \rightarrow WZ$ excluded up to 1.73 TeV
Performance:
- tag-and-probe method from
 $Z (\rightarrow \mu\mu)$ + jets events, where
 probe is jet recoiling against Z
- data/MC agreement within
 10%, corrected using SF

Several applications:
- e.g.: extensions of jet vetos
 to low p_T (Higgs searches)
W-Tagging
[CMS-PAS-JME-13-006]

Event topologies considered

- **Dijet**
 - two hard jets
 - $p_T = 400-600$ GeV
 - accesses high p_T region
 - QCD-jet dominated
 - used to study fake rate

- **W+jets**
 - leptonic $W +$ jet
 - $p_T = 250-350$ GeV
 - accesses low p_T region
 - QCD-jet dominated
 - presence of non-dominant background ($t\bar{t}$, single top)
 - used to study fake rate

- **$t\bar{t}$**
 - leptonic top decay + hadronic top
 - highly pure sample of W-jets
 - used to study efficiency

Benchmark signal: $X \rightarrow W_L W_L$, $M_X = 600$ GeV, 1 TeV
W-Tagging: MC vs Data
[CMS-PAS-JME-13-006]

- Detailed data/MC comparisons for all substructure observables
- Different topologies and generators considered

- leptonlic $W+\text{jets}$
 - Pythia6
 - Herwig

- mistag
 - pT [250, 350] GeV

- di-jets
 - MG+Pythia6
 - Herwig
 - Pythia8

- mistag
 - pT [400, 600] GeV
Detailed **data/MC comparisons** for all substructure observables

Different topologies and generators considered

- ttbar
- powheg
- mc@nlo
- *efficiency*

- leptonic W+jets
- Pythia6
- Herwig

- di-jets
- MG+Pythia6
- Herwig
- Pythia8

- mistag
- pT [250, 350] GeV

- mistag
- pT [400, 600] GeV
MVA correlations

Signal

Background (W+jets)
W-Tagging

[CMS-PAS-JME-13-006]

Substructure variables: mass drop, \(\mu \)

\[\rho_T = 250 - 350 \text{ GeV} \]

(W+jet) - no pruned mass cut

\[\rho_T = 250 - 350 \text{ GeV} \]

(W+jet) - pruned mass cut

Good discrimination power

Discrimination power reduced: correlation with mass cut

Emanuele Usai BOOST13
W-Tagging
[CMS-PAS-JME-13-006]

Substructure variables: N-subjettiness

Three variants considered:
- τ_2/τ_1: one step optimization of the k_T subjet axes
- τ_2/τ_1 k_T axes: no optimization
- pruned τ_2/τ_1: uses only pruned constituents + one pass optimization.

$p_T = 400 - 600$ GeV

(dijet) - no pruned mass cut

$p_T = 400 - 600$ GeV

(dijet) - pruned mass cut

Emanuele Usai BOOST13
W-Tagging
[CMS-PAS-JME-13-006]

Performance in function of p_T

Performance studied for: $60 < m_{jet} < 100$ GeV + $\tau_2/\tau_1 < 0.5$

Efficiency vs p_T (W+jets topology)

- low p_T: W decay products begin to be reconstructed inside CA8 jets
- high p_T: detector resolution for jet substructures degrades, pruning remove too much of the mass of the W

Fake rate vs p_T (dijet topology)

- drops at high p_T similarly to efficiency

Emanuele Usai BOOST13
W-Tagging
[CMS-PAS-JME-13-006]

Performance in function of number of vertices

Efficiency vs Nvtx (W+jets topology)
- slight degrade of performance
- jet pruning fails to remove all soft contributions

Fake rate vs Nvtx (dijet topology)
- constant behavior with respect to Nvtx

Emanuele Usai BOOST13
W-Tagging
[CMS-PAS-JME-13-006]

Quark and Gluons w/Substructure

- Quark/gluon separation vs W same after cuts
- Mass cut more effective on quark separation
- N-subjettiness more effective on gluon separation
 - Once mass the cut is applied
Jet charge, Q^κ

$$Q^\kappa = \frac{\sum_i q_i (p_T^i)^\kappa}{(\sum_i p_T^i)^\kappa}$$

Used to discriminate between W^+ and W^-

Right plot, note: $\langle \text{jet charge} \rangle \neq 0$
Jet charge distribution

$\tau \bar{\tau}$ sample for W^+ and W^- jets in simulation and data. Simulated distributions are a sum of all processes.

$\tau \bar{\tau}$ semileptonic selection

By selecting on the lepton charge, we can isolate W^+ from W^- jets.
W-Tagging
[CMS-PAS-JME-13-006]

Polarization studies

- Polarization can affect substructure distribution
- Sample used: scalar $\chi \to W_{\text{lept}} L W_{\text{had}}^L$ and $\chi \to W_{\text{lept}} U W_{\text{had}}^T$

![Diagram](image)

- Parton level helicity angle for hadronic W
- Observable helicity angle from subjets

Emanuele Usai BOOST13
W-Tagging
[CMS-PAS-JME-13-006]

Polarization studies - τ_2/τ_1

- pruned jet mass acceptance different for W_L and W_T
- ΔR between partons smaller on average for W_L
- W_L more likely to be accepted by CA8 jet
- in W_T topology p_T of the subjets is more asymmetric, thus more QCD-like
Pile-Up Jet-ID
[CMS-PAS-JME-13-005]

Pileup Jet Id Algorithm: Tracking

- 13 variables for the full discrimination
- 4 Vertexing related variables (2 most imp! shown):
 \[\beta = \frac{\sum_{i \in PV} p_{Ti}}{\sum_{i} p_{Ti}} \]
 \[\beta^* = \frac{\sum_{i \in otherPV} p_{Ti}}{\sum_{i} p_{Ti}} \]

Pileup tends to degrade performance of these variables
Pile-Up Jet-ID
[CMS-PAS-JME-13-005]

Pileup Jet Id Algorithm: Cones

- Additional shape variables: ΔR annuli

10^3 CMS Preliminary, $\sqrt{s} = 8$ TeV $L=20$ fb$^{-1}$

$Z \rightarrow \mu \mu$

$|\eta| < 2.5$ Jet $p_T > 25$ GeV

Pileup peaks at in $0.1 < \Delta R < 0.2$

$\Delta R 0.1 => 0.5$
Pile-Up Jet-ID

[CMS-PAS-JME-13-005]

Algorithm Construction

- **Construct a Boosted decision tree real vs PU Jets**

 - Train in four separate regions of η

| $|\eta| < 2.5$ tracking | $2.5 < |\eta| < 2.75$ Weak tracking (tracking ends at 2.5) |
|------------------------|--|
| Shape variables | Shape variables |

| $2.75 < |\eta| < 3.0$ Shape variables | $3.0 < |\eta| < 5.0$ Forward HCAL Shape variables |

Construct a Boosted decision tree (trained on $Z+$jets for each)
Pile-Up Jet-ID
[CMS-PAS-JME-13-005]

08/13/13

Philip Harris BOOST

Pileup Jet Id in Data

- Fraction of pileup grows with higher $|\eta|$
Quark-Gluon Discrimination
[CMS-PAS-JME-13-002]

Single-variable ROCs and likelihood combination
Quark-Gluon Discrimination

[CMS-PAS-JME-13-002]

Single variables discrimination power
Quark-Gluon Discrimination

[CMS-PAS-JME-13-002]

di-jets: derived corrections

Z+jets: applied corrections. Very good closure
Quark-Gluon Discrimination
[CMS-PAS-JME-13-002]

Discrimination power slightly decreases after smearing
Quark-Gluon Discrimination

[CMS-PAS-JME-13-002]

- Quark/gluon discrimination: similarly to PU Jet-ID, combine discriminating variables in likelihood

- Quark and gluon have different colour interaction:
 - Quark jet
 - Gluon jet
 - + multiplicity
 - + width
 - more homogeneous energy sharing

good discrimination power in different η, p_T ranges
Quark-Gluon Discrimination

QG Performance + Usage
- QG discrimination used in VBF selection
 - Reduces the QCD/Pileup bkgs for forward jets
- QG discrimination used in Z boson tagging
- Reduction of 60% gluon for 80% quark eff

VBF $H \rightarrow bb$ Search

H → ZZ → 2l2q Search

Old version of QG Likelihood