Kaon Freeze-out Dynamics
in $\sqrt{s_{NN}}=200$ GeV Au+Au Collisions at RHIC*

Michal Šumbera
sumerba@ujf.cas.cz

Nuclear Physics Institute
Czech Academy of Sciences

XLIII International Symposium on Multiparticle Dynamics

September 15-20, 2013 Illinois Institute of Technology, Chicago, IL
Correlation function of two identical bosons/fermions at small momentum difference q shows effect of quantum statistics.

Height/depth of the B-E/F-D bump λ is related to the fraction $(\lambda^{1/2})$ of particles participating in the enhancement.

Its width scales with the emission radius as R^{-1}.
Correlation femtoscopy in a nutshell (2/3)

The correlation is determined by the size of region from which particles with roughly the same velocity are emitted.

⇒ Femtoscopy measures size, shape, and orientation of homogeneity regions.
Kernel $K(q,r)$ is independent of freeze-out conditions
$S(r)$ is often assumed to be Gaussian \Rightarrow HBT radii
Other option: Inversion of linear integral equation to obtain source function
\Rightarrow Model-independent analysis of emission shape (goes beyond Gaussian shape assumption)
Source Imaging

Geometric information from imaging.

$$R(q) = \int K(q,r) S(r) r^2 \, dr$$

General task:
From data w/errors, $R(q)$, determine the source $S(r)$.
Requires inversion of the kernel K.

Optical recognition: K - blurring function, max entropy method

Any determination of source characteristics from data, unaided by reaction theory, is an imaging.
\[R(q) \equiv C(q) - 1 = 4\pi \int drr^2 K(q,r)S(r) \]

\[K(q,r) = \frac{1}{2} \int d\cos\theta_{\vec{q},\vec{r}} \left[\left| \phi(\vec{q},\vec{r}) \right|^2 - 1 \right] \]

Freeze-out occurs after the last scattering. \(\Rightarrow \) Only Coulomb & quantum statistics effects included in the kernel.

Expand into B-spline basis

\[S(r) = \sum S_j \cdot B_j(r) \]

\[C^{Th}(q_i) = \sum_j K_{ij} \cdot S_j \]

\[K_{ij} = \int dr \cdot K(q_i,r)B_j(r) \]

Vary \(S_j \) to minimize \(\chi^2 \)

\[\chi^2 = \frac{\left(C^{Expt}(q_i) - \sum_j K_{ij} \cdot S_j \right)^2}{\left(\Delta C^{Expt}(q_i) \right)^2} \]

D. A. Brown, P. Danielewicz: UCRL-MA-147919
Why Kaons?

- Pion source shows a heavy, non-Gaussian tail
- Interpretation is problematic
 Tail attributed to decays of long-lived resonances, non-zero emission duration etc.
- Kaons: cleaner probe
 less contribution from resonances
- PHENIX 1D kaon result shows also a long non-Gaussian tail
The STAR Experiment

- **Time Projection Chamber**
 - ID via energy loss \((dE/dx)\)
 - Momentum \((p)\)

- Full azimuth coverage

- Uniform acceptance
 for different energies and particles

The Solenoidal Tracker At RHIC
Kaon femtoscopy analyses

Au+Au @ $\sqrt{s_{NN}}$=200 GeV
Mid-rapidity $|y|<0.5$

1. Source shape: 20% most central
 Run 4: 4.6 Mevts, Run 7: 16 Mevts

2. m_T-dependence: 30% most central
 Run 4: 6.6 Mevts

$0.2<k_T<0.36$ GeV/c

$0.36<k_T<0.48$ GeV/c
1. Source shape analysis
 - dE/dx: $n\sigma(Kaon) < 2.0$ and $n\sigma(Pion) > 3.0$ and $n\sigma(electron) > 2.0$

 $n\sigma(X)$: deviation of the candidate dE/dx from the normalized distribution of particle type X at a given momentum
 - $0.2 < p_T < 0.4$ GeV/c

2. m_T-dependent analysis
 - $-1.5 < n\sigma(Kaon) < 2.0$

 $0.2 < k_T < 0.36$ GeV/c
 - $-0.5 < n\sigma(Kaon) < 2.0$

 $0.36 < k_T < 0.48$ GeV/c
34M+83M=117M (K⁺K⁺ & K⁻K⁻) pairs

STAR data well described by a single Gaussian. Contrary to PHENIX no non-gaussian tails observed. May be due to a different k_T-range: STAR bin is 4x narrower.
Expansion of $R(q)$ and $S(r)$ in Cartesian Harmonic basis

$$R(q) = \sum_l \sum_{\alpha_1 \ldots \alpha_l} R^l_{\alpha_1 \ldots \alpha_l}(q) A^l_{\alpha_1 \ldots \alpha_l}(\Omega_q) \quad (1)$$

$$S(r) = \sum_l \sum_{\alpha_1 \ldots \alpha_l} S^l_{\alpha_1 \ldots \alpha_l}(r) A^l_{\alpha_1 \ldots \alpha_l}(\Omega_q) \quad (2)$$

$\alpha_i = x, y$ or z

$x = \text{out-direction}$

$y = \text{side-direction}$

$z = \text{long-direction}$

3D Koonin-Pratt:

Plug (1) and (2) into (3) \(\Rightarrow\)

$$R(q) = C(q) - 1 = 4\pi \int d^3K(q, r)S(r) \quad (3)$$

$$R^l_{\alpha_1 \ldots \alpha_l}(q) = 4\pi \int d^3K_l(q, r)S^l_{\alpha_1 \ldots \alpha_l}(r) \quad (4)$$

Invert (1) \(\Rightarrow\)

$$R^l_{\alpha_1 \ldots \alpha_l}(q) = \frac{(2l + 1)!!}{l!} \int \frac{d\Omega_q}{4\pi} A^l_{\alpha_1 \ldots \alpha_l}(\Omega_q) R(q)$$

Invert (2) \(\Rightarrow\)

$$S^l_{\alpha_1 \ldots \alpha_l} = \frac{(2l + 1)!!}{l!} \int \frac{d\Omega_q}{4\pi} A^l_{\alpha_1 \ldots \alpha_l}(\Omega_q) S(q)$$
Shape analysis

- \(\ell=0 \) moment agrees 1D \(C(q) \)
 - Higher moments relatively small
- Trial function form for \(S(r) \):
 - 4-parameter ellipsoid (3D Gauss)

\[
S^G(x, y, z) = \frac{\lambda}{(2\sqrt{\pi})^3 r_x r_y r_z} \exp \left[-\left(\frac{x^2}{4r_x^2} + \frac{y^2}{4r_y^2} + \frac{z^2}{4r_z^2} \right) \right]
\]
- Fit to \(C(q) \): technically a simultaneous fit on 6 independent moments

\[
R_\alpha^\ell, \ 0 \leq \ell \leq 4
\]
- Result: statistically good fit

Run4+Run7

200 GeV Au+Au

Centrality < 20%

0.2 < \(k_T \) < 0.36 GeV/c

\[
\begin{align*}
\lambda &= 0.48 \pm 0.01 \\
r_x &= (4.8 \pm 0.1) \text{ fm} \\
r_y &= (4.3 \pm 0.1) \text{ fm} \\
r_z &= (4.7 \pm 0.1) \text{ fm}
\end{align*}
\]
Correlation profiles and source

\[C(q_x) = C(q_x,0,0) \]
\[C(q_y) = C(0,q_y,0) \]
\[C(q_z) = C(0,0,q_z) \]

\[S(r_x) = S_{0}A_{0} + S_{2}A_{2}^{2} + S_{4}A_{4}^{4} \]
\[S(r_y) = S_{0}A_{0} + S_{2}A_{2}^{2} + S_{4}A_{4}^{4} \]
\[S(r_z) = S_{0}A_{0} + S_{2}A_{2}^{2} + S_{4}A_{4}^{4} \]

Gaussian source fit with error band

N.B.: Low statistics shows up as systematic uncertainty on shape assumption
Source: Data comparison

kaon vs. pion: different shape

- Long pion tail caused by resonances and/or emission duration?
- Sign of different freeze-out dynamics?
Source: Model comparison

Therminator

- Blast-wave model (STAR tune):
 - Expansion: \(v_t(\rho) = (\rho/\rho_{\text{max}})/(\rho/\rho_{\text{max}} + v_t) \)
 - Freeze-out occurs at \(\tau = \tau_0 + \alpha \rho \).
 - Finite emission duration \(\Delta \tau \)
- Kaons: Instant freeze-out
 (\(\Delta \tau = 0 \), compare to \(\Delta \tau \sim 2 \text{ fm}/c \) of pions) at \(\tau_0 = 0.8 \text{ fm}/c \)
- Resonances are needed for proper description

Hydrokinetic model

- Hybrid model
 - Glauber initial+Hydro+UrQMD
- Consistent in “side”
- Slightly more tail (\(r > 15 \text{ fm} \)) in “out” and “long”

\[(a) S^0 A^0 + S^2_{xx} A^2_{xx} + S^4_{xxxx} A^4_{xxxx} \]
\[(b) S^0 A^0 + S^2_{yy} A^2_{yy} + S^4_{yyyy} A^4_{yyyy} \]
\[(c) S^0 A^0 + S^2_{zz} A^2_{zz} + S^4_{zzzz} A^4_{zzzz} \]

\(\text{Au+Au } \sqrt{s} = 200 \text{ AGeV} \)
\(0 < \text{centrality} < 20 \% \)

PHENIX pions
\(S(r_x) \text{ (fm}^{-3}\) \)
\(S(r_y) \text{ (fm}^{-3}\) \)
\(S(r_z) \text{ (fm}^{-3}\) \)

\(\text{STAR kaons } \)
3D Gaussian source fit
\(0.20 < k_T < 0.36 \text{ GeV}/c \)
\(-0.5 < y < 0.5 \)

\(a = 0, \rho_{\text{max}} = 9.0 \text{ fm} \)
\(\tau_0 = 8.0 \text{ fm}/c, \Delta \tau = 0 \)

HKM: PRC81, 054903 (2010)
data from Shapoval, Sinyukov, private communication
Excellent description of PHENIX pion data (PRL 93:152302, 2004) using exact solutions of perfect fluid hydrodynamics (Buda-Lund). Ideal hydro has inherent m_T-scaling \Rightarrow predicts kaon radii m_T-dependence.
SPS results on pions and kaons

- “The kaon radii are fully consistent with pions and the hydrodynamic expansion model.”

- “Pions and kaons seem to decouple simultaneously.”

Radii: rising trend at low m_T
- Strongest in “long”

Buda-Lund model
- Perfect hydrodynamics, inherent m_T-scaling
- Works perfectly for pions
- Deviates from kaons in the “long” direction in the lowest m_T bin

HKM (Hydro-kinetic model)
- Describes all trends
- Some deviation in the “out” direction
- Note the different centrality definition

HKM: PRC81, 054903 (2010)
Summary

- First model-independent extraction of kaon 3D source shape presented
- No significant non-Gaussian tail is observed in RHIC $\sqrt{s_{NN}}=200$ GeV central Au+Au data
- Model comparison indicates that kaons and pions may be subject to different dynamics
- The m_T-dependence of the Gaussian radii indicates that m_T-scaling is broken in the “long” direction
Thank You!

Argonne National Laboratory, Argonne, Illinois 60439
Brookhaven National Laboratory, Upton, New York 11973
University of California, Berkeley, California 94720
University of California, Davis, California 95616
University of California, Los Angeles, California 90095
Universidade Estadual de Campinas, Sao Paulo, Brazil
University of Illinois at Chicago, Chicago, Illinois 60607
Creighton University, Omaha, Nebraska 68178
Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech Republic
Niels Bohr Institute, Copenhagen, Denmark
University of Copenhagen, Copenhagen, Denmark
Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech Republic
NIKHEF and Utrecht University, Amsterdam, The Netherlands
Old Dominion University, Norfolk, VA, 23529
Panjab University, Chandigarh 160014, India
Pennsylvania State University, University Park, Pennsylvania 16802
Institute of High Energy Physics, Protvino, Russia
Purdue University, West Lafayette, Indiana 47907
Pusan National University, Pusan, Republic of Korea
University of Rajasthan, Jaipur 302004, India
Rice University, Houston, Texas 77251
Universidade de Sao Paulo, Sao Paulo, Brazil
University of Science \& Technology of China, Hefei 230026, China
Shandong University, Jinan, Shandong 250100, China
Shanghai Institute of Applied Physics, Shanghai 201800, China
SUBATECH, Nantes, France
Texas A\&M University, College Station, Texas 77843
University of Texas, Austin, Texas 78712
University of Houston, Houston, TX, 77204
Tsinghua University, Beijing 100084, China
United States Naval Academy, Annapolis, MD 21402
Valparaiso University, Valparaiso, Indiana 46383
Variable Energy Cyclotron Centre, Kolkata 700064, India
Warsaw University of Technology, Warsaw, Poland
University of Washington, Seattle, Washington 98195
Wayne State University, Detroit, Michigan 48201
Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China
Yale University, New Haven, Connecticut 06520
University of Zagreb, Zagreb, HR-10002, Croatia

STAR Collaboration
3D pions, PHENIX and STAR

Elongated source in “out” direction
Therminator Blast Wave model suggests non-zero emission duration

Very good agreement of PHENIX and STAR 3D pion source images
Fit to correlation moments

Dataset #2
Run4 Cent<30%

0.2<kT<0.36 GeV/c

(a) R^0_{Au+Au}

\[\chi^2_{ndf} = 316/283 = 1.1 \]

(b) R^2_{x2}

(c) R^2_{y2}

(d) R^4_{x2y}

(e) R^4_{x4}

(f) R^4_{y4}

0.36<kT<0.48 GeV/c

(a) R^0_{Au+Au}

\[\chi^2_{ndf} = 363/283 = 1.3 \]

(b) R^2_{x2}

(c) R^2_{y2}

(d) R^4_{x2y}

(e) R^4_{x4}

(f) R^4_{y4}
Source parameters

<table>
<thead>
<tr>
<th>Year</th>
<th>2004+2007</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrality</td>
<td>0–20%</td>
<td>0–30%</td>
</tr>
<tr>
<td>k_T [GeV/c]</td>
<td>0.2–0.36</td>
<td>0.2–0.36</td>
</tr>
<tr>
<td>R_x [fm]</td>
<td>4.8±0.1±0.2</td>
<td>4.3±0.1±0.4</td>
</tr>
<tr>
<td>R_y [fm]</td>
<td>4.3±0.1±0.1</td>
<td>4.0±0.1±0.3</td>
</tr>
<tr>
<td>R_z [fm]</td>
<td>4.7±0.1±0.2</td>
<td>4.3±0.2±0.4</td>
</tr>
<tr>
<td>λ</td>
<td>0.49±0.02±0.05</td>
<td>0.39±0.01±0.09</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>497/289</td>
<td>316/283</td>
</tr>
</tbody>
</table>

TABLE I. Parameters obtained from the 3-D Gaussian source function fits for the different datasets. The first errors are statistical, the second errors are systematic.
Cartesian harmonics basis

- Based on the products of unit vector components, $n_{\alpha 1} n_{\alpha 2}$, ..., $n_{\alpha \ell}$. Unlike the spherical harmonics they are real.
- Due to the normalization identity $n^2_x + n^2_y + n^2_z = 1$, at a given $\ell \geq 2$, the different component products are not linearly independent as functions of spherical angle.
- At a given ℓ, the products are spanned by spherical harmonics of rank $\ell' \leq \ell$, with ℓ' of the same evenness as ℓ.

$A^{(1)}_x$	$A^{(3)}_{xyz}$
$A^{(2)}_{xx}$	$A^{(4)}_{xxxx}$
$A^{(2)}_{xy}$	$A^{(4)}_{xxyy}$
$A^{(3)}_{xxx}$	$A^{(4)}_{xxyz}$
$A^{(3)}_{xyy}$	

$A^{(1)}_x = n_x$

$A^{(2)}_{xx} = n_x^2 - 1/3$

$A^{(2)}_{xy} = n_x n_y$

$A^{(3)}_{xxx} = n_x^3 - (3/5)n_x$

$A^{(3)}_{xyy} = n_x^2 n_y - (1/5)n_y$

$A^{(3)}_{xyz} = n_x n_y n_z$

$A^{(4)}_{xxxx} = n_x^4 - (6/7)n_x^2 + 3/35$

$A^{(4)}_{xxyy} = n_x^3 n_y - (3/7)n_x n_y$

$A^{(4)}_{xxyz} = n_x^2 n_y n_z - (1/7)n_y n_z$
Spherical Harmonics basis

\[R_{\ell m}(q) = (4\pi)^{-1/2} \int d\Omega_q Y^*_{\ell m}(\Omega_q) R(q), \]
\[S_{\ell m}(r) = (4\pi)^{-1/2} \int d\Omega_r Y^*_{\ell m}(\Omega_r) S(r). \]

- Disadvantage: connection between the geometric features of the real source function \(S(r) \) and the complex valued projections \(S_{\ell m}(r) \) is not transparent.

- \(Y_{\ell m} \) harmonics are convenient for analyzing quantum angular momentum, but are clumsy for expressing anisotropies of real-valued functions.