Fast Crystal Scintillators for GHz Hard X-Ray Imaging

Chen Hu, Fan Yang, Liyuan Zhang, Ren-Yuan Zhu,
California Institute of Technology
Aiping Chen, Zhehui Wang,
Los Alamos National Laboratory
Lei Ying and Zongfu Yu
University of Wisconsin

September 13, 2018

Presentation in the ULITIMA 2018 Conference at ANL
High-Energy and Ultrafast X-Ray Imaging Technologies and Applications

Organizers: Peter Denes, Sol Gruner, Michael Stevens & Zhehui (Jeff) Wang

(Location/Time: Santa Fe, NM, USA /Aug 2-3, 2016)

The goals of this workshop are to gather the leading experts in the related fields, to prioritize tasks for ultrafast hard X-ray imaging detector technology development and applications in the next 5 to 10 years, see Table 1, and to establish the foundations for near-term R&D collaborations.

Table I. High-energy photon imagers for MaRIE XFEL

<table>
<thead>
<tr>
<th>Performance</th>
<th>Type I imager</th>
<th>Type II imager</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray energy</td>
<td>30 keV</td>
<td>42-126 keV</td>
</tr>
<tr>
<td>Frame-rate/inter-frame time</td>
<td>0.5 GHz/2 ns</td>
<td>3 GHz / 300 ps</td>
</tr>
<tr>
<td>Number of frames</td>
<td>10</td>
<td>10 - 30</td>
</tr>
<tr>
<td>X-ray detection efficiency</td>
<td>above 50%</td>
<td>above 80%</td>
</tr>
<tr>
<td>Pixel size/pitch</td>
<td>≤ 300 μm</td>
<td>< 300 μm</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>10^3 X-ray photons</td>
<td>$\geq 10^4$ X-ray photons</td>
</tr>
<tr>
<td>Pixel format</td>
<td>64 x 64 (scalable to 1 Mpix)</td>
<td>1 Mpix</td>
</tr>
</tbody>
</table>

2 ns and 300 ps inter-frame time requires very fast scintillator and sensor.
Why Crystal Scintillator?

- Detection efficiency for hard X-ray requires bulk detector.
- Scintillation light provides fast signal.
- Pixelized crystal detector is a standard for medical industry.

A detector concept:
- Pixelized fast scintillator screen;
- Pixelized fast photodetector;
- Fast electronics readout.

Challenges:
Ultra-fast crystals, photodetectors and readout.
Pixelized Crystal Detectors

Crystal panels of 300 µ pitch may be fabricated by classical mechanical processing

1 mm BGO Pixels for PET

CsI(Tl) panel of 30 x 40 X 1 cm with 0.3 mm pixels

Laser slicing and not pixelized may provide better coverage
Candidate Scintillators for Marie

<table>
<thead>
<tr>
<th></th>
<th>LYSO (:Ce)</th>
<th>YSO:Ce</th>
<th>ZnO:Ga</th>
<th>BaF₂</th>
<th>BaF₂:Y</th>
<th>YAP:Ce</th>
<th>YAP:Yb</th>
<th>YAG:Yb</th>
<th>LuAG:Ce</th>
<th>LaBr₃ (:Ce)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>7.4</td>
<td>4.44</td>
<td>5.67</td>
<td>4.89</td>
<td>4.89</td>
<td>5.35</td>
<td>5.35</td>
<td>4.56</td>
<td>6.76</td>
<td>5.29</td>
</tr>
<tr>
<td>Melting points (°C)</td>
<td>2050</td>
<td>2070</td>
<td>1975</td>
<td>1280</td>
<td>1280</td>
<td>1870</td>
<td>1870</td>
<td>1940</td>
<td>2060</td>
<td>783</td>
</tr>
<tr>
<td>X₀ (cm)</td>
<td>1.14</td>
<td>3.10</td>
<td>2.51</td>
<td>2.03</td>
<td>2.03</td>
<td>2.77</td>
<td>2.77</td>
<td>3.53</td>
<td>1.45</td>
<td>1.88</td>
</tr>
<tr>
<td>Rₘ (cm)</td>
<td>2.07</td>
<td>2.93</td>
<td>2.28</td>
<td>3.1</td>
<td>3.1</td>
<td>2.4</td>
<td>2.4</td>
<td>2.76</td>
<td>2.15</td>
<td>2.85</td>
</tr>
<tr>
<td>λ₁ (cm)</td>
<td>20.9</td>
<td>27.8</td>
<td>22.2</td>
<td>30.7</td>
<td>30.7</td>
<td>22.4</td>
<td>22.4</td>
<td>25.2</td>
<td>20.6</td>
<td>30.4</td>
</tr>
<tr>
<td>Zₑff</td>
<td>64.8</td>
<td>33.3</td>
<td>27.7</td>
<td>51.6</td>
<td>51.6</td>
<td>31.9</td>
<td>31.9</td>
<td>30</td>
<td>60.3</td>
<td>45.6</td>
</tr>
<tr>
<td>dE/dX (MeV/cm)</td>
<td>9.55</td>
<td>6.57</td>
<td>8.42</td>
<td>6.52</td>
<td>6.52</td>
<td>8.05</td>
<td>8.05</td>
<td>7.01</td>
<td>9.22</td>
<td>6.90</td>
</tr>
<tr>
<td>λₚₑᵃ (nm)</td>
<td>420</td>
<td>420</td>
<td>389</td>
<td>300</td>
<td>220</td>
<td>300</td>
<td>220</td>
<td>370</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Refractive Indexᵇ</td>
<td>1.82</td>
<td>1.78</td>
<td>2.1</td>
<td>1.5</td>
<td>1.5</td>
<td>1.96</td>
<td>1.96</td>
<td>1.87</td>
<td>1.84</td>
<td>1.9</td>
</tr>
<tr>
<td>Normalized Light Yieldᵃ,ᶜ</td>
<td>100</td>
<td>80</td>
<td>6.6ᵉ</td>
<td>42</td>
<td>4.8</td>
<td>1.7</td>
<td>4.8</td>
<td>9</td>
<td>32</td>
<td>0.19ᵉ</td>
</tr>
<tr>
<td>Total Light yield (ph/MeV)</td>
<td>30,000</td>
<td>24,000</td>
<td>2,000ᵉ</td>
<td>13,000</td>
<td>2,000</td>
<td>12,000</td>
<td>57ᵉ</td>
<td>110ᵉ</td>
<td>25,000ᶠ</td>
<td>46,000</td>
</tr>
<tr>
<td>Decay timeᵃ (ns)</td>
<td>40</td>
<td>75</td>
<td><1</td>
<td>600</td>
<td>0.6</td>
<td>600</td>
<td>0.6</td>
<td>191</td>
<td>25</td>
<td>1.5</td>
</tr>
<tr>
<td>Light Yield in 1ˢᵗ ns (photons/MeV)</td>
<td>740</td>
<td>318</td>
<td>610ᵉ</td>
<td>1200</td>
<td>1200</td>
<td>391</td>
<td>28ᵉ</td>
<td>24ᵉ</td>
<td>240</td>
<td>2,200</td>
</tr>
<tr>
<td>40 keV Att. Length (1/e, mm)</td>
<td>0.185</td>
<td>0.334</td>
<td>0.407</td>
<td>0.106</td>
<td>0.106</td>
<td>0.314</td>
<td>0.314</td>
<td>0.439</td>
<td>0.251</td>
<td>0.131</td>
</tr>
</tbody>
</table>

a. Top line: slow component, bottom line: fast component;

b. At the wavelength of the emission maximum;

c. Excited by Gamma rays;

d. For 0.4 at% Ca co-doping;

e. Excited by Alpha particles.

f. Ceramic with 0.3 Mg at% co-doping
LYSO and ZnO:Ga Samples

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Vendor</th>
<th>ID</th>
<th>Dimension (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LYSO:Ce</td>
<td>SIC</td>
<td>150210-1</td>
<td>19x19x2</td>
</tr>
<tr>
<td>YSO:Ce</td>
<td>SIC</td>
<td>51</td>
<td>25x25x5</td>
</tr>
<tr>
<td>ZnO:Ga</td>
<td>FJIRSM</td>
<td>2014-1</td>
<td>33x30x2</td>
</tr>
<tr>
<td>ZnO:Ga</td>
<td>FJIRSM</td>
<td>2014-2</td>
<td>22x22x0.3</td>
</tr>
</tbody>
</table>

Experiments

- Properties measured at room temperature: PL & Decay, Transmittance, PHS, LO & Decay kinetics
SIC LYSO:Ce-150210-1

- **✓ High LO, good transmittance and ER, short decay time**
- **✗ Decay time too long for X-ray frame rate of a few ns**

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>200 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC LYSO-150210-1</td>
<td>19×19×2</td>
<td>80.1</td>
<td>7.1</td>
<td>4841</td>
<td>41</td>
</tr>
</tbody>
</table>

- Transmittance (%) vs Wavelength (nm)
- Number of Events vs Channel Number
- Light Output (p.e./MeV) vs Time (ns)

PMT: R1306, HV: -850, Gate = 200 ns
Grease, Tyvek wrapping

LO = 4841 p.e./MeV
ER = 7.1%

L.O = A₀ + A₁ (1 - e^(-t/τ))

A₀: 0
A₁: 4848
τ: 41 ns

September 13, 2018
Presentation by Liyuan Zhang, Caltech, in the ULTIMA 2018 Conference at ANL
SIC YSO:Ce-51 (in LANL)

- Good LO, transmittance, ER, and short decay time

- All these performance are inferior to LYSO:Ce

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>500 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC YSO-51</td>
<td>25×25×5</td>
<td>72.6</td>
<td>8.1</td>
<td>3906</td>
<td>75</td>
</tr>
</tbody>
</table>
FJIRSM ZnO:Ga-2014-1

✓ Very short decay time

× Low EWLT and LO due to severe self absorption

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>50 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FJIRSM ZnO:Ga-2014-1</td>
<td>33×30×2</td>
<td>7.0</td>
<td>37.8</td>
<td>76 (α)</td>
<td>2.7</td>
</tr>
</tbody>
</table>
FJIRSM ZnO:Ga-2014-2

- Reduced self absorption due to 0.3 mm thickness
- May pursue QD, NP or thin film based solution

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>50 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FJIRSM ZnO:Ga-2014-2</td>
<td>22×22×0.3</td>
<td>10.8</td>
<td>18.2</td>
<td>296 (α)</td>
<td>3.5</td>
</tr>
</tbody>
</table>
BaF$_2$ and Other Samples

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Vendor</th>
<th>ID</th>
<th>Dimension (mm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaF$_2$</td>
<td>SIC</td>
<td>1</td>
<td>50×50×5</td>
</tr>
<tr>
<td>BaF$_2$:Y</td>
<td>BGRI</td>
<td>1708</td>
<td>10×10×2</td>
</tr>
<tr>
<td>YAP:Ce</td>
<td>Dongjun</td>
<td>2102</td>
<td>Φ50×2</td>
</tr>
<tr>
<td>YAP:Yb</td>
<td>Dongjun</td>
<td>2-2</td>
<td>Φ40×2</td>
</tr>
<tr>
<td>YAG:Yb</td>
<td>Dongjun</td>
<td>4</td>
<td>10×10×5</td>
</tr>
<tr>
<td>LuAG:Ce</td>
<td>SIC</td>
<td>S2</td>
<td>25×25×0.4</td>
</tr>
</tbody>
</table>

Experiments

- Properties measured at room temperature: PL & Decay, Transmittance, PHS, LO & Decay kinetics
SIC BaF$_2$-1

✓ The highest LY in 1st ns among all non-hygroscopic scintillators

× ~600 ns slow component may be suppressed by Y doping

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>50 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC BaF$_2$-1</td>
<td>50×50×5</td>
<td>85.1</td>
<td>54.9</td>
<td>209</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure:
- Transmittance (%)
- Number of Events
- Light Output (p.e./MeV) vs Time (ns)

Notes:
- PMT: XP2554B, HV = -1800 V, Gate = 50 ns
- Na-22 source, Coincidence Trigger
- EL = 209 p.e./MeV, ER = 54.9%

Presentation by Liyuan Zhang, Caltech, in the ULITIMA 2018 Conference at ANL.
Yttrium Doping in BaF$_2$

While the fast component in BaF$_2$ keeps more or less the same, the slow component is significantly suppressed by Yttrium doping.
BGRI Y Doped/Undoped BaF$_2$

Fast/Slow ratio increased from 0.20 to 3.2
γ-ray induced damage in BaF$_2$

- BaF$_2$ crystals of 25 cm long were irradiated by Co-60 at Caltech and JPL.
- 40% fast scintillation light remains after 120 Mrad ionization dose at JPL.
Proton induced damage in BaF$_2$

- BaF$_2$ plates of 5 mm thick were irradiated by 800 MeV at LANL in 2016.
- 90% fast scintillation light remains after 10^{15} p/cm2.

Neutron induced damage in BaF$_2$

- BaF$_2$ plates of 5 mm thick were irradiated by neutrons at LANL in 2016.
- 75% fast scintillation light remains after 3×10^{15} n (>1 MeV)/cm2.

To be published in the proceedings of CALOR2018
DJ YAP:Ce-2102

✓ Adequate LO and ER

♥ Self absorption and slow component

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>200 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJ YAP:Ce-2102</td>
<td>Φ50×2</td>
<td>54.7</td>
<td>19.6</td>
<td>1611</td>
<td>25</td>
</tr>
</tbody>
</table>

- **Dimensions**: DJ YAP:Ce-2102 Φ 50×2 mm³
- **Light Output**: LO = A₁(1-e^{(-t/τ₁)}) + A₂(1-e^{(-t/τ₂)})
- **Channels**: LO = 1611 p.e./MeV
- **Efficiency**: E.R. = 19.6%
- **Components**: PMT:R1306, HV=-1000 V, Gate = 1000 ns
- **Source**: Na-22 Source, Coincidence Trigger
- **Net peak**: 498
- **Time**: t = τ₁ + τ₂
- **Values**: A₁ = 1341, τ₁ = 25, A₂ = 376, τ₂ = 191
DJ YAP:Yb-2-2

- **Very short decay time**
- **Low LO due to thermal quenching**

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>50 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJ YAP:Yb-2-2</td>
<td>Φ40×2</td>
<td>77.7</td>
<td>41</td>
<td>9.1 (α)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- **Theoretical limit of transmittance:**
 - Measured transmittance:
 - EWLT=77.7%

- **Number of Events**
 - YAP:Yb 15% DJ2-2 Φ 40×2 mm³
 - PMT:R2059, HV = -2300 V, Gate = 50 ns
 - Am 241 source, 5.03 MeV Alpha particles excited
 - Ped=82
 - Net peak=392
 - LO = 9.1 p.e./MeV
 - ER = 41%

- **Pulse Height (V)**
 - PH = A₀ + A₁e^(-t/τ)
 - A₀, A₁, τ values provided:
 - A₀ = 0
 - A₁ = 3.2
 - τ = 1.5
DJ YAG:Yb-4

- **Very short decay time and good transmittance**
- **Low LO due to thermal quenching**

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>50 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJ YAG:Yb-4</td>
<td>10×10×5</td>
<td>83.1</td>
<td>22.4</td>
<td>28.4 (α)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Graphs and Data

- **Transmittance vs. Wavelength**
 - DJ YAG:Yb-4 10×10×5 mm³
 - EWLT=83.1%
 - Theoretical limit of transmittance

- **Number of Events vs. Channel Number**
 - YAG:Yb 13% DJ-4 10×10×5 mm³
 - PMT:R2059, HV = -2100 V, Gate = 50 ns
 - Am-241 source, 5.03 MeV Alpha particles excited
 - Ped=82
 - Net peak=583
 - LO = 28.4 p.e./MeV
 - ER = 22.4%

- **Pulse Height vs. Time**
 - YAG:Yb DJ-4 10×10×5 mm³
 - PMT:R2059, HV=-2200 V
 - Readout by DSO Agilent 9254
 - PH = A₀ + A₁e^{(-t/τ)}
 - A₀ = 0
 - A₁ = 3.8
 - τ = 3.6 ns

September 13, 2018 Presentation by Liyuan Zhang, Caltech, in the ULITIMA 2018 Conference at ANL
SIC LuAG:Ce-S2 Ceramics

- Good LO and ER, and short decay time
- ~ 1 μs slow component

<table>
<thead>
<tr>
<th>ID</th>
<th>Dimension</th>
<th>EWLT (%)</th>
<th>ER (%)</th>
<th>200 ns LO (p.e./MeV)</th>
<th>Primary Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC LuAG-S2</td>
<td>25×25×0.4</td>
<td>52.3</td>
<td>19.1</td>
<td>1531</td>
<td>51</td>
</tr>
</tbody>
</table>

September 13, 2018 Presentation by Liyuan Zhang, Caltech, in the ULTIMA 2018 Conference at ANL
A multilayer high QE photocathode coated thin fast scintillators concept was proposed for GHz hard X-ray imaging:

- Spatial resolution determined layer thickness,
- Overall efficiency defined layer number,
- Maximized conversion of scintillation photon to p.e.,
- Magnetic field extraction of p.e. and image preserving,
- Off-beam p.e. multiplication,
- On-board charge storages.

Figure 6. A multi-layer detector architecture for efficient and fast imaging of diffracted X rays. A guide magnetic field perpendicular to the X-ray direction guide the photoelectrons to amplification and storage. The magnetic field also preserves the image contrast due to X-ray absorption at the scintillator location.
Purcell Factor for Ag Particles

$R = \infty$ is equivalent to a infinite layer. Our simulation is greatly agree with experiments (red circles) as right figure. Agreement includes the peak value, wavelength and bandwidth.

Experimental Proposal

ZnO

Metal

SiO2

Background $\varepsilon_b \approx 2.17$ for PMMA
In recent study\cite{1}, \textit{S. Oktyabrsky, et al. report} an \textbf{ultrafast, no self-absorption, high-efficient room-temperature semiconductor scintillator} based on InAs QDs embedded in a GaAs matrix.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BaF$_2$</th>
<th>LYSO</th>
<th>GaAs/InAs QDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm3)</td>
<td>4.89</td>
<td>7.1</td>
<td>5.32</td>
</tr>
<tr>
<td>Radiation length, cm</td>
<td>2.03</td>
<td>1.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Decay constant, ns</td>
<td>0.8 ns</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>Peak emission, nm</td>
<td>195; 220</td>
<td>428</td>
<td>1050</td>
</tr>
<tr>
<td>Photon Yield</td>
<td>1,400</td>
<td>34,000</td>
<td>240,000</td>
</tr>
<tr>
<td>(photons/MeV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time between first photons, for 1MeV</td>
<td>0.57ps</td>
<td>1.2 ps</td>
<td>2 fs</td>
</tr>
<tr>
<td>Poisson-limited energy resolution at 1MeV (keV) *</td>
<td>62</td>
<td>13</td>
<td>4.8</td>
</tr>
<tr>
<td>Radiation hardness, Gy</td>
<td>10^4-10^5</td>
<td>10^4-10^5</td>
<td>$>10^4$</td>
</tr>
<tr>
<td>Coupling efficiency</td>
<td><50%</td>
<td><50%</td>
<td>~100%</td>
</tr>
</tbody>
</table>

\textit{Ref.: \cite{1} S. Oktyabrsky, et al., IEEE Trans. Nucl. Sci. 63, 656 (2016).}

\textbf{Room temperature photocurrent spectra overlapped with PL spectra of the same QD structure with reduced wetting layer placed in a p-n junction.}
It was reported that nanocrystals of cesium lead halide perovskites (CsPbX$_3$, $X = \text{Cl, Br, and I}$) shows bright emission with a tunable range by quantum size effects.

Figure 2. Colloidal perovskite CsPbX$_3$ NCs ($X = \text{Cl, Br, I}$) exhibit size- and composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission: (a) colloidal solutions in toluene under UV lamp ($\lambda = 365$ nm); (b) representative PL spectra ($\lambda_{\text{exc}} = 400$ nm for all but 350 nm for CsPbCl$_3$ samples); (c) typical optical absorption and PL spectra; (d) time-resolved PL decays for all samples shown in (c) except CsPbCl$_3$.

Nano Lett. 2015, 15, 3692−3696. DOI: 10.1021/nl5048779
GHz hard X-ray imaging for the proposed Marie project presents an unprecedented challenge to the speed and radiation hardness of inorganic scintillators.

BaF$_2$ crystals provide sufficient fast light with sub-ns decay time and excellent radiation hardness beyond 100 Mrad and 1×10^{15} h/cm2. With its slow component effectively suppressed by yttrium doping BaF$_2$:Y promises a fast and robust front imager.

Bulk ZnO:Ga crystals suffer from serious self-absorption. Enhanced UV emission in Ag/Au ZnO core-shell nano particles hints a thin film based approach.

Our plan is to investigate along both lines: BaF$_2$:Y crystals, and ZnO QD/NP based thin film for the Marie project with a close collaboration between the NP, HEP and material science communities.

Acknowledgements: DOE Award DE-SC001192
Purcell effect for enhancing ZnO luminescence
(Theoretical framework)

Total field:

\[
\langle \bar{E}_m(r) \rangle = E^L_m(r) + \frac{\omega^2}{\varepsilon_0 c^2} \mathcal{G}(r, r_0; \omega) \cdot \mu \langle S \rangle
\]

Dipole moment: \(\langle \hat{S} \rangle = \frac{-\Omega [2\Delta - i\gamma_m]}{4\Delta^2 + 2|\Omega|^2 + \gamma_m^2} \)

Rabi frequency: \(\Omega = 2\mu \cdot E^L_m(r_0) \)

\(\Delta \) is detuning
\(\mathcal{G}(r, r_0; \omega) \) is Dyadic Green’s function

NOTE: dipole is considered as a point in theory. In experiment, ZnO is the dipole.

In numerical calculation, the dyadic Green’s function is the kernel.

\[
\gamma_m = 2\text{Im}\left[\mu \cdot E_\mu(r_0)\right] = 2\text{Im}\left[\mu \cdot \mathcal{G}(r, r_0; \omega) \cdot \mu\right]
\]

\(\gamma_m/\gamma_0 \) is Purcell enhancement factor
The Purcell factor is sensitive to the distance between ZnO and metallic nanoparticle. The bandwidth of Purcell factor is stable for a variety of distance D.
The spatial resolution Vs thickness of thin scintillator

Z. Wang et al. has proposed the following equation to determine the maximum thickness of scintillator for a scintillator camera:

\[R_{\text{spatial}} = 2d \sin \theta_c = 2d \sin \frac{1}{n} \]

where \(R_{\text{spatial}} \) is the spatial resolution, \(d \) is the thickness of scintillator, \(\theta_c \) is the reflective index of scintillator at emission peak.

- The spatial resolution \((R_{\text{spatial}}) \) of a scintillator camera is limited by the scintillator thickness \((d) \); For an air-to-scintillator interface, the total internal reflection angle \((\theta_c) \) is \(\sin(1/n) \) for a flat interface;
- \(R_{\text{spatial}} \) is limited to \(2d \sin \theta_c \) for a thickness \(d \), assuming the light interacts with the interface only once (~ 95% of the light for incidental angles less than the Brewster’s angle of \(\text{atan}(1/n) \)). For 100-μm spatial resolution, the thickness of BaF₂ crystal with a reflective index of 1.54 @220nm cannot exceed 71μm.

The maximum thickness of thin scintillator determined by X-ray imaging spatial resolution

<table>
<thead>
<tr>
<th></th>
<th>LYSO:Ce</th>
<th>LSO:Ce, Ca</th>
<th>BaF₂</th>
<th>CsF</th>
<th>CeBr₃</th>
<th>LaBr₃:Ce</th>
<th>YAG:Yb</th>
<th>YAP:Yb</th>
<th>ZnO:Ga</th>
<th>PbI₂</th>
<th>GaAs/In</th>
<th>Plastic scintillator (BC 404)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflective index at emission peak (n)</td>
<td>1.82</td>
<td>1.82</td>
<td>1.54</td>
<td>1.49</td>
<td>1.9</td>
<td>1.9</td>
<td>1.87</td>
<td>1.96</td>
<td>2.1</td>
<td>3.4</td>
<td>3.47</td>
<td>1.58</td>
</tr>
<tr>
<td>1/n</td>
<td>0.549</td>
<td>0.549</td>
<td>0.649</td>
<td>0.671</td>
<td>0.526</td>
<td>0.526</td>
<td>0.535</td>
<td>0.510</td>
<td>0.476</td>
<td>0.294</td>
<td>0.288</td>
<td>0.633</td>
</tr>
<tr>
<td>atan(1/n)</td>
<td>0.502</td>
<td>0.502</td>
<td>0.576</td>
<td>0.591</td>
<td>0.484</td>
<td>0.484</td>
<td>0.491</td>
<td>0.472</td>
<td>0.444</td>
<td>0.286</td>
<td>0.281</td>
<td>0.564</td>
</tr>
<tr>
<td>Maximum thickness (d) for 100um spatial resolution (mm)</td>
<td>86</td>
<td>86</td>
<td>71</td>
<td>68</td>
<td>90</td>
<td>90</td>
<td>89</td>
<td>93</td>
<td>101</td>
<td>167</td>
<td>171</td>
<td>73</td>
</tr>
</tbody>
</table>