Host Galaxy Identification for Supernova Surveys

Ravi Gupta (Bldg 360, Room L-173)
Steve Kuhlmann, Eve Kovacs, Hal Spinka, Camille Liotine, Kasia Pomian + DES
HEP Division Young Scientist Symposium Series
16 February 2016
Type Ia Supernovae (SNe Ia): Standardizable Candles

- SNe Ia are thermonuclear explosions of carbon-oxygen white dwarfs
- Peak luminosity is related to both lightcurve width and color
- Calibrating the luminosity based on these empirical relations allows us to use SNe Ia as distance indicators and probe cosmology via the distance-redshift relation.

Type Ia supernova lightcurves

- Luminous SN fade slowly
- Less luminous SN fade fast
- Corrected luminosities & durations
- Corrected widths
- $x \approx 3$
- $\sim 10\%$
Type Ia Supernovae (SNe Ia): Cosmological Probes

- Past surveys discovered tens to hundreds of SNe Ia
- Current and future surveys will find thousands and even hundreds of thousands more
- SN cosmology is becoming limited by systematic uncertainties rather than statistics:
 1. Photometric calibration
 2. Host galaxy correlations

Hubble Diagram

Betoule et al. (2014)
740 SNe Ia
The Importance of Host Galaxy Identification

- Host galaxy identification ("host matching") is a crucial step for modern SN surveys
- The Dark Energy Survey (DES) is on track to discover ~3500 SNe Ia
- The upcoming Large Synoptic Survey Telescope (LSST) will discover $\gg 10$K SNe Ia
- In the absence of SN spectroscopy to determine SN types, we rely mainly on host galaxy spectra to obtain redshifts which are used to photometrically type SNe
The Importance of Host Galaxy Identification: Photometric SN Classification

- By fitting the shape of the lightcurve, we can determine if the SN was Type Ia or other type
- Redshift of host galaxy (from spectrum of the host) greatly improves fit
- Only ~10% of our final sample of SNe Ia will be spectroscopically confirmed
- The majority rely on this method of photometric classification

DES Year 1 SN Ia candidate fit using host galaxy redshift prior

- DES13X3tvl
 - $\chi^2 / \text{dof} = 0.92786035$
- $z = 0.5191 \pm 0.0025$
- $t_0 = 56628.34 \pm 0.37$
- $x_0 = (9.64 \pm 0.28) \times 10^{-6}$
- $x_1 = -0.03 \pm 0.25$
- $c = -0.041 \pm 0.028$
- $mw E(B-V) = 0.040928748$
The Importance of Host Galaxy Identification: Host Galaxy Correlations

- In addition, SN luminosities are known to correlate with host galaxy properties.
- The origin of this correlation is not yet understood, but cosmology analyses already use host galaxy properties to correct for SN luminosities.
- Reliable identification of host galaxies is essential for cosmology and SN science.

345 SNe Ia from SDSS

3.6σ significance of non-zero slope

SN Hubble Residual (mag)

log stellar mass (M/M☉)
Method: Directional Light Radius (DLR)

DLR = radius of a galaxy in the direction of the SN
Method: Directional Light Radius (DLR)

DLR = radius of a galaxy in the direction of the SN

- Search for galaxies within a 30” radius of SN position
- Match SN to the galaxy that is nearest in units of galaxy radius (DLR)
- In this way, the separation distance is normalized by the apparent size of the galaxy
Testing Host Matching with Simulations

- Using galaxy catalogs we can place simulated SN locations onto galaxies
 - Mock catalog: MICECATv2.0 (Carretero et al. 2015)
 - Real catalog: *HST* ACS General Catalog (Griffith et al. 2012)
- SN redshifts simulated to reproduce DES-like SN Ia redshift distribution
- SN positions placed such that they follow the light distribution of their host galaxies (Sérsic profiles)
- When matching, assume fiducial hostless SN rate of 5% to simulate magnitude-limited survey

HOSTLESS: After simulating SNe, perform a magnitude cut on catalog such that the faintest 5% of hosts are removed
Testing Host Matching with Simulations: Results

- DLR distance to nearby galaxies is computed from the galaxy coordinates, sizes, shapes, and orientations given in the catalog
- Nearest galaxy in DLR-space is designated as the host
- Since the true host is known, we can test the matching accuracy
- **The DLR method performs with ~91% accuracy** (we know the 5% hostless will be mismatched to galaxies brighter than the true host)

![Histograms showing redshift and stellar mass distributions](image)

Even if the incorrectly-matched host happens to have a similar redshift,…

… this is still a problem given what we know about SN-host correlations
Improvements with Machine Learning

- We would like some way of quantifying the probability of a correct match for each SN, while also improving the matching accuracy, if possible.
- After initial DLR matching algorithm, implement Random Forests for binary classification into {correct match, wrong match}.
- Features of the SN-matched host pairs are used to train the classifier.
Improvements with Machine Learning: Results

- Applying the trained ML classifier to a validation set, we can obtain (for each SN-host match) the probability of a correct match.
- Fixing the efficiency at 98%, we find that **ML boosts the matching accuracy (purity) up to ~97%**
Next Steps

- This paper is headed for DES collaboration-wide review in a couple weeks.
- A follow-up paper will focus specifically on SNe Ia and DES, including propagating the effects of host galaxy mismatches to photometric SN classification and biases on cosmological parameters.
- Train the ML classifier on real DES galaxy catalogs so we can begin assigning ML probabilities to actual DES SNe.
EXTRA SLIDES
Type Ia Supernova Progenitors

THIS...

WHITE DWARF GROWS IN MASS

Single Degenerate

... OR THIS?

MERGER SCENARIO

... OR BOTH?

ORBITING WHITE DWARFS

Double Degenerate

NASA/CXC/M.Weiss/Bad Astronomer
Comparing SN Simulations with Data

- ACS-GC sim.
- MICECAT sim.
- SDSS data (all SNe)
- SNLS3 data (SNe Ia)
Machine Learning: Definitions

- **Efficiency** = fraction of true correct matches recovered by the classifier
 - \(\frac{T_P}{T_P + F_N} \)

- **Purity** = the accuracy with which objects are classified as correct matches
 - \(\frac{T_P}{T_P + F_P} \)

<table>
<thead>
<tr>
<th>PREDICTED CLASS</th>
<th>TRUE CLASS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct Match</td>
<td>True Positives (T_P)</td>
<td>False Positives (F_P)</td>
<td></td>
</tr>
<tr>
<td>Wrong Match</td>
<td>False Negatives (F_N)</td>
<td>True Negatives (T_N)</td>
<td></td>
</tr>
</tbody>
</table>