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Tracking
• Fundamental issues in tracking
• Silicon detectors and their applications
• New ideas and developments for the HL-LHC
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HL-LHC tracker upgrades
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• New all-silicon trackers for ATLAS and CMS

• Radiation hardness and rate 
performance must increase compared 
to LHC Run I
– Run 2 (2015) ≈ x5 
– Run 3 (2018) ≈ x 5-10
– HL-LHC (>2025) ≈ x 10-30

• In the inner pixel layers: 
– 1016 neq cm-2and TID > 1 Grad

• Increased luminosity and 
track rate require:
– Larger area 
– Higher hit-rate capability
– Increased granularity
– Higher radiation tolerance
– Lighter detectors
– Cheaper price tag !!barrel

endcap

endcap

~200 m2 silicon (strips & pixels)

~ 1014 neq cm-2

~ 1015 neq cm-2

~ 1016 neq cm-2

HL-LHC



Radiation damage due to NIEL
• Atomic displacement caused by massive 

particles (p,n,π)
– Charge defects è change of effective 

doping concentration è increase Neff (= 
ND – NA) and depletion voltage

– Shallow defect: Trapping centers created è

trapping of signal charge

– Midgap defects: generation/recombination 
levels in band gapè increase of leakage
current
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[M.Moll PhD Thesis][M.Moll PhD Thesis]

Radiation damage due to NIEL

D. Bortoletto HCP Summer School 2016 4

10-1 100 101 102 103

eq  [ 1012 cm-2 ]

1

5
10

50
100

500
1000

5000

U
de

p [
V

]  
(d

 =
 3

00
m

)

10-1

100

101

102

103

| N
ef

f |
  [

 1
011

 c
m

-3
 ] 

 600 V

1014cm-2

type inversion

n-type "p-type"
[M.Moll: Data: R. Wunstorf, PhD thesis 1992, Uni Hamburg]

α =
ΔI

V ⋅Φeq

≈ 4x10-17  A/cm 

• Change in Ileak
– increased noise
– increased power
– thermal runaway
– increased cooling
– increased material

• change in Neff
– “type inversion”
– “reverse annealing
– need higher Vbias
– op. in partial depletion



Effect of radiation in silicon
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• Even after heavy irradiation both p and n sides work at low voltage (under 
depleted)  and sensors act as if there were 2 diode junctions! 

• For Φ > 1015 neq/cm2 charge trapping is important: Charge 
Collection Distance  becomes smaller than detector 
thickness



Ionizing Dose
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• Damage due to ionizing 
energy loss
– Proportional to absorbed 

radiation dose
– 1 Gy = 1 J/kg = 100 rad = 104

erg/g (energy loss per unit mass)
– Trap of ionization induced holes 

by “dangling bond” at Si-SiO2 
interface

• Affects both detector and electronics



HL-LHC Strips
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• For HL-LHC upgrade:     
n+ in p or n+ in n

• LHC and pre-LHC: 
p+ in n

• Consequences:
– signal loss
– resolution degradation due 

to charge spreading 

• Advantages:
– faster charge collection 

(electrons have higher vdrift)
– Less signal and CCE 

degradation 



HL-LHC Strips
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• For HL-LHC upgrade:     
n+ in p or n+ in n

• LHC and pre-LHC: 
p+ in n

• Consequences:
– signal loss
– resolution degradation due 

to charge spreading 

• Advantages:
– faster charge collection 

(electrons have higher vdrift)
– Less signal and CCE 

degradation 

p – type substrates favored for 
strips and pixels



HL-LHC Pixels
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• Thin planar n+ in p sensors sensors

• 5000 e- in 150 μm thin sensors 
@ 500 Vbias

• Hit efficiency > 80% at Φ > 1016

75𝝁m

285𝝁m150𝝁m

150𝝁m

F=1016neq/cm2 F=1.4 1016neq/cm2



3D sensors
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• Advantages
– Decouple thickness from electrode 

distance
– Lower depletion voltage, less power 

dissipation
– Smaller drift distance, less trapping

• Disadvantage
– More complex production process
– Lower yield, higher costs
– Higher capacitance (more noise) 

• 3D is the most radiation hard technology to-day
• Similar performance than planar sensors, but less demanding in 

terms of bias voltage and cooling. 
• For the HL-LHC we need :

– More radiation hard (innermost layer(s), 1-2E16 neq/cm2)
– Smaller pixels (compatible with new readout chip, 50 μm – 25 μm)
– Thinner (reduce cluster size/merging, 200 μm – 100 μm)

S. Parker and C. Kenney



Key fabrication steps

• BOSCH PROCESS: alternating passivation (C4F8) and 
etch cycles (SF6)

– Within the plasma an electric field is applied perpendicular to the 
silicon surface. 

– The etch cycle consists of fluorine based etchants which react 
with silicon surface, removing silicon. The etch rates are ~1-
5μm/minute. 

– To minimize side wall etching, etch cycle is stopped and replaced 
with a passivation gas which creates a Teflon-like coating 
homogenously around the cavity. Energetic fluorine ions, 
accelerated by the e-field, remove the coating from the cavity 
bottom but NOT the side walls. 
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Existing 3D designs
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3D in ATLAS IBL
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• After 4.3 fb-1 corresponding to  1.3 Mrad and 2.5×1013 neq/cm2

• Bias voltage
• IBL 3D: 20 V
• IBL planar: 80 V
• B-layer: 250 V

NOISE MAP



RD53: 65 nm HL-LHC ROC
• Joint cross experiments effort to:

– Radiation qualification and characterization of the CMOS 65 nm technology (TSMC)
– Develop tools to design and characterize circuits and building blocks needed for pixel chips
– Design and characterize a full scale demonstrator pixel chip

• FE-65 first full-size prototype -> spring 2016
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F. Faccio, TWEPP 2015, Proceedings



CMOS
• The CMOS stays for the complementary metal oxide semiconductor transistor (a type of field 

effect transistor, F. Wanlass 1963)
• First MOSFET was realized in 1959 Dawon Kahng and Martin M. Atalla.
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CMOS
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CMOS
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Radiation effects in 65 nm CMOS
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Radiation Induced Narrow Channel Effect (RINCE)
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Radiation effects in 65 nm CMOS
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• NMOS are working 
without large damage 
up to 1Grad (damage 
< 20%)

• PMOS transistors do 
not work above 
500Mrad 

• Further studies 
ongoing including 
DRAD chip to 
investigate different 
transistors (size 
and shape)



ATLAS Tracker
• Driving design considerations

– finer segmentation

– simplicity & robustness maintaining 
minimal material

– affordable cost
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ATLAS ITK Layouts
• Several layout under study
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ATLAS ITK Layouts
• Several layout under study
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CMS Tracker
• Excellent tracking performance 
• Focus on triggering @ L1
• New industrial 8” (an possibly 12”) 

sensors
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• Sensor spacing in the Outer Tracker 
was tuned to have pT cut of 2 GeV/c



pT modules
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• 2 Strip sensors
• 2x1016 Strips: ~ 5 cm x 90 μm
• 2x1016 Strips: ~ 5 cm x 90 μm
• P ~ 5 W
• ~ 2x 90 cm2 active area
• For r > 60 cm
• Spacing 1.8 mm and 4.0 mm

• Pixel + Strip sensors
• 2x960 Strips: ~ 2.5 cm x100 μm
• 32x960 Pixels: ~ 1.4 mm x100 μm
• P ~ 7 W
• ~ 2x 45 cm2 active area
• For r > 20 cm
• Spacing 1.6 mm, 2.6 mm and 4.0 mm

Operate sensors at about -20 oC with 
cooling set point at -30 oC

2S

PS
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CMS Track trigger
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Time MUX Trigger to
process complete event

Associative memories tracks seeded by stubs 
pairs



From hybrid to monolithic pixels

• Cheaper & better performance? 
• Better resolution 
• Easier module production 
• No bump-bonding 
• Lower material budget
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FESensor

Bump bonding

• Can we combine 
detection and readout 
in one ROC ?

STAR MAPS 2014  0.16 m2

Technology of 
choice for ILC



A CMOS revolution ? 
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• Depleted Monolithic Active Pixel Sensor
– HR-material (charge collection by drift)
– Fully depleted MAPS (DMAPS)

• Hybrid Pixels with Smart Diodes
– HR or HV-CMOS as a sensor (8”)
– Standard FE chip
– CCPD (HVCMOS) on FE-I4

• CMOS Active Sensors + Digital R/O 
chip
– HR or HV-CMOS sensor + CSA 

(+Discriminator)
– Dedicated “digital only” FE chip

• Passive CMOS Sensor + R/O chip
– HR or HV-CMOS sensor
– Dedicated FE chip
– Low cost C4 bumping and flip-chip

Diode + Analogue + Digital

Diode + Analogue Standard FE (A + D)

Diode + Analogue Digital FE



CMOS for imaging
• Rolling shutter architecture

– Pixels of the same column share the same column line. 
– The gates of the switches are connected row-wise 
– For the readout of whole matrix we need n steps, where n is the number of rows. 
– Proper concept for imaging 
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Monolithic Active Pixels
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IPHC Strasbourg 
(PICSEL group)) 

� Very thin sensitive volume impact on 
signal magnitude 

� Sensitive volume almost un-depleted 
� Collection through diffusion slow➠

impact on radiation tolerance & 
speed

� Only N-MOS transistors

� Use standard CMOS technology
� Signal is created in epitaxial layer (10-15

μm e.g. AMS 0.35  μm)
� Q≃80 e-h/μm➠ signal <1000 e−
� Q collected many by diffusion P-MOS 

transistor could lead to a loss of charge
� Small pixel sizes(pitch 20 –30 μm)➠ few 

μm resolution

Applications:, STAR-detector (RHIC Brookhaven) 
Eudet beam-telescope 



MAPS in STAR • Data taking since 2014 (Au-
Au, p-p, p-Au-collisions)

D. Bortoletto HCP Summer School 2016 32

carbon fiber sector tubes   
(~ 200 μm thick)

Topological reconstruction of 
charm hadrons such as D0 which 
a lifetime ∼ 120 μm

356 M 
pixels
in 2 
layers
~0.16 m2

Ladder with10 MAPS



MAPS in STAR
• Unexpected damage seen on 15 ladders in 

the STAR radiation environment in 2014 
Run first 2 weeks 

• Latch-up phenomenon: 
– Self feeding short circuit caused by single 

event upset 

– Can only be stopped by removing the power 
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Inner layer damage: 14% 

• Pixel sensor layers deconstructed (plasma 
etching technique) and viewed with SEM. 

• The metal layer appears to be melted 
• Safe operations envelope implemented

• Latch-up protection at 80 mA above 
operating current 

• Periodic detector reset 



Full CMOS MAPS
• If PMOS transistors are introduced, signal loss can happen
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NMOS transistor in p-well

N-well (collecting region)
Pixel i

P-type epi-layer

P-type substrate Energy (e-)
MAPS with a PMOS transistor in pixel

PMOS transistor in n-well

Signal 
collection

Signal loss



INMAPS 
• TowerJazz and Rutherford Appleton 

Laboratory
– Deep P-Well to shield the PMOS 

transistors from epi layer 
• No charge loss occurs 
• Full CMOS ➠ Smart pixels 

possible 
– Disadvantages

• Not a standard process ➠
limited number of producers
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• INMAPS on High Resistivity resistivity (> 
1kΩ cm) p-type epi-layer 18-40 µm thick

• Moderate reverse bias to increase  
depletion zone around NWELL diode ➠
some charge collection by drift

• Small n-well collecting diodes small ➠
Cin

• Radiation tolerance (TID) to 700 krad
(= 1/1500 of HL-LHC-pp)

Application in HEP: ALICE
ALICE ITS, SEM picture of prototype chip

epitaxial layer ~ 24 µm
standard low res. substrate

R. Turchetta, W. Snoeys



ALICE: MAPS
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• Improve impact parameter resolution by a 
factor of ~3 in (r-f) and ~5 in (z)

–Closer to IP: 39 mm à 21 mm (layer 0)
–Reduce beampipe radius: 29 mm à
18.2 mm

–Reduce pixel size: (50 µm x 425 µm) à
O(30 µm x 30 µm)

–Reduce material budget: 1.14 % X0 à
0.3 % X0 (inner layers)

• High tracking efficiency and pT
resolution

– Increase granularity and radial 
extension à 7 pixel layers

• Fast readout of Pb-Pb interactions at 
50 kHz  (now 1kHz) and 400 kHz in p-p 
interactions

• Rad hard to TID: 2.7 Mrad, NIEL: 1.7 x 
1013 1 MeV neq cm-2 (safety factor 10)

• Fast insertion/removal for maintenance

~ 10 m2 12.5 G pixel

carbon fibre
space frame

P. Riedler



ALPIDE
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• Pixel size: 29 x 27 µm2 with low power 
front-end ~40 nW/pixel

• Extensive tests before and after irradiation

30 mm

15
 m

m

0.5 x 106 pixels
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• Efficiency > 99.5% and fake hit rate << 105 over wide threshold range
• Excellent performance also after irradiation to 1013 (1MeV neq)/cm2

25 µm epitaxial layer, -6V back bias



CMOS HL-LHC
• The rate/radiation environment of the HL-LHC is challenging but CMOS could:

– Lower cost large area detectors using commercial fabs
– More pixel layers in trackers
– A reduction of material and power

• R&D is ongoing with the goal of: 
– Achieve a depletion depth of 40 – 80 μm
– Fast charge collection (for < 25ns “in-time” collection)
– Reasonably large signal ~4000 e-
– Small collection distance to avoid trapping and increase rad hardness
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10 Ω cm 2 kΩ cm
NW: 1V
PW: 0V

𝑑 ∝ 𝜌𝑉�

High resistivity, high voltagelow resistivity, low voltage



Enabling technologies
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• “High” Voltage

• “High” 
resisitivity

• “Technology 
features

• Backside processing

Special processing for automotive and power 
management application to allow the HV necessary to 
create a depletion layer in a well’s pn-junction of o(10-
15 μm).

Radiation hard processes with multiple  wells.
Foundry must accept some process/DRC changes to 
optimize the design for HEP.

Wafer thinning from backside and backside implant
to fabricate a backside contact aner CMOS processing

Hi/mid resistivity silicon wafers accepted/qualified by 
the foundry to facilitate the needed depletion layer



R&D on DMAPS
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Electronics inside charge collection well

• Full CMOS with additional deep-p 
implant

• Small collection node
• Smaller capacitance ➠ less power
• Long drift path

Electronics outside collection well

• Deep n and p wells
• Large collection node
• Large sensors capacitance sensor 

capacitance (DNW/PW junction!) ➠
X-talk, noise & speed (power) penalties

• Short drift path

p-substrate

Deep n-well

P+ p-well

Charge signal

Electronics (full CMOS)

P+nw

-
p-substrate

n+ p-well

Charge signal

Electronics (full CMOS)

n+nw

deep p-well

-



R&D on HV/HR CMOS
• CCPD 

– triple well process
– 10 Ωcm, 60 – 100 V
– depletion depth 10-20 μm -> 100 μm

after irradiation
– ~1000 e- by drift
– R/O by AC coupling to FEI4 via glue 

layer
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AMS 180 nm

I. Peric et al., NIM A765 (2014) 172-176

After Irradiation

25 ns
DMAPS chip

FEI4



HV/HR-CMOS: strip
o Amplifiers and comparators could be on 

sensor but the rest of digital processing, 
command I/O, trigger pipelines, etc will go 
into a readout ASIC

o The active area is pixelated, with 
connections to the periphery that can yield 
2D coordinates

o Pixel size ~40 µm x 800 µm 
o Max reticle sizes are ~2x2 cm2. Therefore 

rows of 4-5 chips could be the basic units 
(yield performance is critical here)
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o Cost savings.
o Faster 

construction
o Less material in 

the tracker.



4D Tracking
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• Achieve ≈10 ps timing resolution with Si detectors using 
charge amplification with Low-Gain Avalanche Detectors

• Timing at each point 
along the track:
– Massive simplification 

of patter recognition
– Faster tracking 

algorithm even in very 
dense environments 
by using only “time 
compatible points

• Gain in silicon detectors is achieved through the avalanche mechanism which 
occurs when are accelerated by the electric field to energies sufficient to create 
mobile or free electron-hole pairs via collisions with bound electrons. Avalanche 
starts in high electric fields: E ~ 300 kV/cm



Gain in Silicon
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• Charge multiplication: N(l)=N0 e𝛂l and G= e𝛂l 

• Silicon devices with gain:
– Avalanche Photo Diodes APD with G=5-500

– SiPm G=104

• Use external bias: assuming a 300 micron thick silicon detector, we 
need Vbias = 10 kV to achieve E ~ 300kV/cm

10 KV
Not 
possible



LGAD
• LGAD sensors obtain the high E-field by 

adding an extra doping layer
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Current from thin and thick 
detectors

D. Bortoletto HCP Summer School 2016 47

• Thick detectors have higher 
number of charges

Qtot∼75qd
• However the charge contributes 

to the initial current as

EW=weighting field determines how the 
charge couples to the electrode

Shockley-Ramo Theorem

i= −*+
*,

=q𝐸𝑊𝑣⃗

i= 75𝑞𝑑 4
*

v=75 kv=1-2 x 10-6 A The initial current is 
constant



Gain and thickness
• The rate of particles produced by the gain does not depend 

on the thickness
• The gain current depends on d (via the weighting field)

• A given value of gain has much more effect on thin 
detectors
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LGAD
• Therefore

D. Bortoletto HCP Summer School 2016 49

𝑑𝑉
𝑑𝑡 ∝

𝐺
𝑑

Slew rate:
• Increases with gain
• Increases ~ 1/thickness

For a fixed gain:
• amplitude = constant
• rise time ~ 1/thickness



Time resolution
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• Figure of merit for 
σt is the “slew rate” 
dV/dt ≈ Signal/τrise

• Need: fast drift, large 
signals, low noise
– e- drift velocity in saturation

(E = 20 kV/cm, vD ≈ 107

cm/s) 
– collect electrons fast ➠ thin 

detectors
– large signals ➠ gain
– small C, small ileak , low 

noise ➠ small electrodes
– broad-band amplifier

σt ~ 140 ps @ 800 Volts



Time resolution
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R&D ongoing with CNM and FBK to 
make thinner faster detectors



Conclusions
• Tracking is essential to the reach our ambitious physics goals

• Technologies come and go but the use of silicon sensor for tracking 
is not yet going
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• Larger: >>200 m2 

(FCC-HH)
• More channels: 

Giga pixels
• Thinner: 20  μm
• Less noise
• Better resolution
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FCC
• Tracker Detector evolution for the FCC
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Thin sensors
§ Reduced material
§ Reduced ILeakage

§ Planar sensors: work 
at 2x1016 neq/cm2

– need high bias voltage

– n in n (inner),

– n in p (outer layers)

• Slim edges (both for 3D 

and planar
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1016 cm-2

5 x1015 cm-2

1 x1015 cm-275µm


